-
1
-
-
1542763507
-
Topological Orders and Edge Excitations in FQH States
-
Xiao-Gang Wen, Topological Orders and Edge Excitations in FQH States, Adv. Phys. 44, 405 (1995).
-
(1995)
Adv. Phys.
, vol.44
, pp. 405
-
-
Wen, X.-G.1
-
3
-
-
28844477796
-
Quantum Spin Hall Effect in Graphene
-
C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett. 95, 226801 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 226801
-
-
Kane, C.L.1
Mele, E.J.2
-
4
-
-
28844477210
-
2 Topological Order and the Quantum Spin Hall Effect
-
2 Topological Order and the Quantum Spin Hall Effect, Phys. Rev. Lett. 95, 146802 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 146802
-
-
Kane, C.L.1
Mele, E.J.2
-
6
-
-
57249110726
-
Classification of Topological Insulators and Superconductors in Three Spatial Dimensions
-
Andreas P. Schnyder, Shinsei Ryu, Akira Furusaki, and Andreas W.W. Ludwig, Classification of Topological Insulators and Superconductors in Three Spatial Dimensions, Phys. Rev. B 78, 195125 (2008).
-
(2008)
Phys. Rev. B
, vol.78
, pp. 195125
-
-
Schnyder, A.P.1
Ryu, S.2
Furusaki, A.3
Ludwig, A.W.W.4
-
7
-
-
0001706046
-
Quantized Thermal Transport in the Fractional Quantum Hall Effect
-
C. L. Kane and Matthew P.A. Fisher, Quantized Thermal Transport in the Fractional Quantum Hall Effect, Phys. Rev. B 55, 15832 (1997).
-
(1997)
Phys. Rev. B
, vol.55
, pp. 15832
-
-
Kane, C.L.1
Fisher, M.P.A.2
-
8
-
-
30444456387
-
Anyons in an Exactly Solved Model and Beyond
-
Alexei Kitaev, Anyons in an Exactly Solved Model and Beyond, Ann. Phys. 321, 2 (2006).
-
(2006)
Ann. Phys.
, vol.321
, pp. 2
-
-
Kitaev, A.1
-
9
-
-
0000840903
-
Quantized Hall Conductivity in Two Dimensions
-
R. B. Laughlin, Quantized Hall Conductivity in Two Dimensions, Phys. Rev. B 23, 5632 (1981).
-
(1981)
Phys. Rev. B
, vol.23
, pp. 5632
-
-
Laughlin, R.B.1
-
10
-
-
23544435097
-
Quantized Hall Conductance, Current-Carrying Edge States, and the Existence of Extended States in a Two-Dimensional Disordered Potential
-
Bertrand I. Halperin, Quantized Hall Conductance, Current-Carrying Edge States, and the Existence of Extended States in a Two-Dimensional Disordered Potential, Phys. Rev. B 25, 2185 (1982).
-
(1982)
Phys. Rev. B
, vol.25
, pp. 2185
-
-
Halperin, B.I.1
-
11
-
-
65649108305
-
Periodic Table for Topological Insulators and Superconductors
-
A.Yu. Kitaev, Periodic Table for Topological Insulators and Superconductors, AIP Conf. Proc. 1134, 22 (2009).
-
(2009)
AIP Conf. Proc.
, vol.1134
, pp. 22
-
-
Kitaev, A.Y.1
-
12
-
-
39049088106
-
Quantum Codes on a Lattice with Boundary
-
S. B. Bravyi and A.Y. Kitaev, Quantum Codes on a Lattice with Boundary, arXiv:quant-ph/9811052.
-
-
-
Bravyi, S.B.1
Kitaev, A.Y.2
-
13
-
-
78651428675
-
Topological Boundary Conditions in Abelian Chern-Simons Theory
-
Anton Kapustin and Natalia Saulina, Topological Boundary Conditions in Abelian Chern-Simons Theory, Nucl. Phys. B 845, 393 (2011).
-
(2011)
Nucl. Phys. B
, vol.845
, pp. 393
-
-
Kapustin, A.1
Saulina, N.2
-
14
-
-
84862844227
-
Models for Gapped Boundaries and Domain Walls
-
Alexei Kitaev and Liang Kong, Models for Gapped Boundaries and Domain Walls, Commun. Math. Phys. 313, 351 (2012).
-
(2012)
Commun. Math. Phys.
, vol.313
, pp. 351
-
-
Kitaev, A.1
Kong, L.2
-
15
-
-
70449083454
-
Fractional Topological Insulators
-
Michael Levin and Ady Stern, Fractional Topological Insulators, Phys. Rev. Lett. 103, 196803 (2009).
-
(2009)
Phys. Rev. Lett
, vol.103
, pp. 196803
-
-
Levin, M.1
Stern, A.2
-
16
-
-
84867031920
-
Classification and Analysis of Two Dimensional Abelian Fractional Topological Insulators
-
Michael Levin and Ady Stern, Classification and Analysis of Two Dimensional Abelian Fractional Topological Insulators, Phys. Rev. B 86, 115131 (2012).
-
(2012)
Phys. Rev. B
, vol.86
, pp. 115131
-
-
Levin, M.1
Stern, A.2
-
17
-
-
80455124098
-
Claudio Chamon, and Christopher Mudry, Fractional Topological Liquids with Time-Reversal Symmetry and Their Lattice Realization
-
Titus Neupert, Luiz Santos, Shinsei Ryu, Claudio Chamon, and Christopher Mudry, Fractional Topological Liquids with Time-Reversal Symmetry and Their Lattice Realization, Phys. Rev. B 84, 165107 (2011).
-
(2011)
Phys. Rev. B
, vol.84
, pp. 165107
-
-
Neupert, T.1
Santos, L.2
Ryu, S.3
-
19
-
-
84866382683
-
Theory and Classification of Interacting "Integer"Topological Phases in Two Dimensions: A Chern-Simons Approach
-
Yuan-Ming Lu and Ashvin Vishwanath, Theory and Classification of Interacting "Integer"Topological Phases in Two Dimensions: A Chern-Simons Approach, Phys. Rev. B 86, 125119 (2012).
-
(2012)
Phys. Rev. B
, vol.86
, pp. 125119
-
-
Lu, Y.-M.1
Vishwanath, A.2
-
20
-
-
84883493360
-
Boundary Degeneracy of Topological Order
-
Juven Wang and Xiao-Gang Wen, Boundary Degeneracy of Topological Order, arXiv:1212.4863.
-
-
-
Wang, J.1
Wen, X.-G.2
-
21
-
-
0001146528
-
Stability of Chiral Luttinger Liquids and Abelian Quantum Hall States
-
F. D. M. Haldane, Stability of Chiral Luttinger Liquids and Abelian Quantum Hall States, Phys. Rev. Lett. 74, 2090 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.74
-
-
Haldane, F.D.M.1
-
22
-
-
84883510487
-
-
Note that it is not important whether U(?) is relevant or irrelevant in the renormalization group sense. The reason is that we are not interested in the perturbative stability of the edge, but rather whether it is stable to arbitrary local interactions
-
Note that it is not important whether U(?) is relevant or irrelevant in the renormalization group sense. The reason is that we are not interested in the perturbative stability of the edge, but rather whether it is stable to arbitrary local interactions.
-
-
-
-
23
-
-
5244278223
-
Classification of Abelian Quantum Hall States and Matrix Formulation of Topological Fluids
-
X. G. Wen and A. Zee, Classification of Abelian Quantum Hall States and Matrix Formulation of Topological Fluids, Phys. Rev. B 46, 2290 (1992).
-
(1992)
Phys. Rev. B
, vol.46
, pp. 2290
-
-
Wen, X.G.1
Zee, A.2
-
24
-
-
84883519259
-
-
It can be shown that the signature of K is equal to the difference between the number of left- and right-moving edge modes, nL-nR, using the bulk-edge correspondence described below
-
R, using the bulk-edge correspondence described below
-
-
-
-
25
-
-
84866355638
-
Braiding Statistics Approach to Symmetry-Protected Topological Phases
-
Michael Levin and Zheng-Cheng Gu, Braiding Statistics Approach to Symmetry-Protected Topological Phases, Phys. Rev. B 86, 115109 (2012).
-
(2012)
Phys. Rev. B
, vol.86
, pp. 115109
-
-
Levin, M.1
Gu, Z.-C.2
-
26
-
-
0043030013
-
Fermions, Strings, and Gauge Fields in Lattice Spin Models
-
Michael Levin and Xiao-Gang Wen, Fermions, Strings, and Gauge Fields in Lattice Spin Models, Phys. Rev. B 67, 245316 (2003).
-
(2003)
Phys. Rev. B
, vol.67
, pp. 245316
-
-
Levin, M.1
Wen, X.-G.2
-
27
-
-
33745315996
-
Spectral Gap and Exponential Decay of Correlations
-
Matthew B. Hastings and Tohru Koma, Spectral Gap and Exponential Decay of Correlations, Commun. Math. Phys. 265, 781 (2006).
-
(2006)
Commun. Math. Phys
, vol.265
, pp. 781
-
-
Hastings, M.B.1
Koma, T.2
-
28
-
-
0000392797
-
A Proof of the Nielsen-Ninomiya Theorem
-
D. Friedan, A Proof of the Nielsen-Ninomiya Theorem, Commun. Math. Phys. 85, 481 (1982). Zemba, Modular Invariant Partition Functions in the Quantum Hall Effect, Nucl. Phys. B 490, 595 (1997).
-
(1982)
Commun. Math. Phys
, vol.85
, pp. 481
-
-
Friedan, D.1
-
30
-
-
84863329966
-
Interacting Topological Phases and Modular Invariance
-
Shinsei Ryu and Shou-Cheng Zhang, Interacting Topological Phases and Modular Invariance, Phys. Rev. B 85, 245132 (2012).
-
(2012)
Phys. Rev. B
, vol.85
, pp. 245132
-
-
Ryu, S.1
Zhang, S.-C.2
-
31
-
-
0031582180
-
Modular Invariant Partition Functions in the Quantum Hall Effect
-
Andrea Cappelli and Guillermo R. Zemba, Modular Invariant Partition Functions in the Quantum Hall Effect, Nucl. Phys. B 490, 595 (1997).
-
(1997)
Nucl. Phys. B
, vol.490
, pp. 595
-
-
Cappelli, A.1
Zemba, G.R.2
-
32
-
-
73749083094
-
Chiral Partition Functions of Quantum Hall Droplets
-
A. Cappelli, G. Viola, and G. R. Zemba, Chiral Partition Functions of Quantum Hall Droplets, Ann. Phys. 325, 465 (2010).
-
(2010)
Ann. Phys
, vol.325
, pp. 465
-
-
Cappelli, A.1
Viola, G.2
Zemba, G.R.3
-
33
-
-
79551657612
-
Partition Functions of Non-Abelian Quantum Hall States
-
Andrea Cappelli and Giovanni Viola, Partition Functions of Non-Abelian Quantum Hall States, J. Phys. A 44, 075401 (2011).
-
(2011)
J. Phys. A
, vol.44
, pp. 075401
-
-
Cappelli, A.1
Viola, G.2
-
36
-
-
33344468870
-
Solving Gapped Hamiltonians Locally
-
M. B. Hastings, Solving Gapped Hamiltonians Locally, Phys. Rev. B 73, 085115 (2006).
-
(2006)
Phys. Rev. B
, vol.73
, pp. 085115
-
-
Hastings, M.B.1
|