메뉴 건너뛰기




Volumn , Issue , 2013, Pages 583-590

Iterated multi-swarm: A multi-swarm algorithm based on archiving methods

Author keywords

Many objective optimization; Multi objective optimization; Particle swarm optimization

Indexed keywords

EMPIRICAL ANALYSIS; MANY-OBJECTIVE OPTIMIZATIONS; MULTI OBJECTIVE EVOLUTIONARY ALGORITHMS; MULTI-SWARMS; NEW PARTICLE SWARM OPTIMIZATION; NONDOMINATED SOLUTIONS; PARETO-OPTIMAL FRONT; QUALITY INDICATORS;

EID: 84883118498     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2463372.2463447     Document Type: Conference Paper
Times cited : (8)

References (20)
  • 1
    • 79953276040 scopus 로고    scopus 로고
    • Diversity management in evolutionary many-objective optimization
    • IEEE Transactions on april
    • S. Adra and P. Fleming. Diversity management in evolutionary many-objective optimization. Evolutionary Computation, IEEE Transactions on, 15(2):183-195, april 2011.
    • (2011) Evolutionary Computation , vol.15 , Issue.2 , pp. 183-195
    • Adra, S.1    Fleming, P.2
  • 3
    • 84866874998 scopus 로고    scopus 로고
    • Using archiving methods to control convergence and diversity for many-objective problems in particle swarm optimization
    • 2012 IEEE Congress on june
    • A. Britto and A. Pozo. Using archiving methods to control convergence and diversity for many-objective problems in particle swarm optimization. In Evolutionary Computation (CEC), 2012 IEEE Congress on, pages 605-612, june 2012.
    • (2012) Evolutionary Computation (CEC) , pp. 605-612
    • Britto, A.1    Pozo, A.2
  • 4
    • 82455212930 scopus 로고    scopus 로고
    • Measuring the convergence and diversity of cdas multi-objective particle swarm optimization algorithms: A study of many-objective problems
    • Jan.
    • A. B. d. Carvalho and A. Pozo. Measuring the convergence and diversity of cdas multi-objective particle swarm optimization algorithms: A study of many-objective problems. Neurocomputing, 75:43-51, Jan. 2012.
    • (2012) Neurocomputing , vol.75 , pp. 43-51
    • Carvalho, A.B.D.1    Pozo, A.2
  • 6
    • 84866860135 scopus 로고    scopus 로고
    • Handling many-objective problems using an improved nsga-ii procedure
    • 2012 IEEE Congress on june
    • K. Deb and H. Jain. Handling many-objective problems using an improved nsga-ii procedure. In Evolutionary Computation (CEC), 2012 IEEE Congress on, pages 1-8, june 2012.
    • (2012) Evolutionary Computation (CEC) , pp. 1-8
    • Deb, K.1    Jain, H.2
  • 9
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research, 7:1-30, 2006.
    • (2006) The Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 13
    • 79955912058 scopus 로고    scopus 로고
    • Stochastic convergence of random search methods to fixed size pareto front approximations
    • M. Laumanns and R. Zenklusen. Stochastic convergence of random search methods to fixed size pareto front approximations. European Journal of Operational Research, 213(2):414-421, 2011.
    • (2011) European Journal of Operational Research , vol.213 , Issue.2 , pp. 414-421
    • Laumanns, M.1    Zenklusen, R.2
  • 15
    • 56449113900 scopus 로고    scopus 로고
    • Distance based ranking in many-objective particle swarm optimization
    • G. Rudolph, T. Jansen, S. Lucas, C. Poloni, and N. Beume, editors Springer Berlin / Heidelberg
    • S. Mostaghim and H. Schmeck. Distance based ranking in many-objective particle swarm optimization. In G. Rudolph, T. Jansen, S. Lucas, C. Poloni, and N. Beume, editors, Parallel Problem Solving from Nature U PPSN X, volume 5199 of Lecture Notes in Computer Science, pages 753-762. Springer Berlin / Heidelberg, 2008.
    • (2008) Parallel Problem Solving from Nature u PPSN X, Volume 5199 of Lecture Notes in Computer Science , pp. 753-762
    • Mostaghim, S.1    Schmeck, H.2
  • 16
    • 84942162725 scopus 로고    scopus 로고
    • Strategies for finding good local guides in multi-objective particle swarm optimization
    • S. Mostaghim and J. Teich. Strategies for finding good local guides in multi-objective particle swarm optimization. In Swarm Intelligence Symposium, pages 26-33, 2003.
    • (2003) Swarm Intelligence Symposium , pp. 26-33
    • Mostaghim, S.1    Teich, J.2
  • 20
    • 79953809057 scopus 로고    scopus 로고
    • On the influence of the number of objectives on the hardness of a multiobjective optimization problem
    • O. Schütze, A. Lara, and C. A. C. Coello. On the influence of the number of objectives on the hardness of a multiobjective optimization problem. IEEE Trans. Evolutionary Computation, 15(4):444-455, 2011.
    • (2011) IEEE Trans. Evolutionary Computation , vol.15 , Issue.4 , pp. 444-455
    • Schütze, O.1    Lara, A.2    Coello, C.A.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.