메뉴 건너뛰기




Volumn , Issue , 2013, Pages 13-22

Improving search result summaries by using searcher behavior data

Author keywords

Mouse cursor movement; Result summary generation; Searcher behavior

Indexed keywords

DOCUMENT EXAMINATIONS; MOUSE CURSOR; QUALITY OF RESULTS; SEARCHER BEHAVIOR; SNIPPET GENERATION; STATE-OF-THE-ART METHODS; SUMMARY GENERATION; TEXT-BASED FEATURES;

EID: 84883062539     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2484028.2484093     Document Type: Conference Paper
Times cited : (26)

References (39)
  • 1
    • 80052112523 scopus 로고    scopus 로고
    • Find it if you can: A game for modeling different types of web search success using interaction data
    • M. Ageev, Q. Guo, D. Lagun, and E. Agichtein. Find it if you can: A game for modeling different types of web search success using interaction data. In Proc. of SIGIR, 2011.
    • (2011) Proc. of SIGIR
    • Ageev, M.1    Guo, Q.2    Lagun, D.3    Agichtein, E.4
  • 3
    • 85107362379 scopus 로고    scopus 로고
    • Nltk: The natural language toolkit
    • S. Bird. Nltk: the natural language toolkit. In Proc. of the COLING/ACL., pages 69-72, 2006.
    • (2006) Proc. of the COLING/ACL , pp. 69-72
    • Bird, S.1
  • 4
    • 84858432835 scopus 로고    scopus 로고
    • Integrating rhetorical-semantic relation models for query-focused summarization
    • S. Blair-Goldensohn and K. McKeown. Integrating rhetorical-semantic relation models for query-focused summarization. In Proc. of DUC, 2006.
    • (2006) Proc. of DUC
    • Blair-Goldensohn, S.1    McKeown, K.2
  • 6
    • 84964616006 scopus 로고    scopus 로고
    • An analysis of the askmsr question-answering system
    • Stroudsburg, PA, USA Association for Computational Linguistics
    • E. Brill, S. Dumais, and M. Banko. An analysis of the askmsr question-answering system. In Proc. of ACL, EMNLP '02, pages 257-264, Stroudsburg, PA, USA, 2002. Association for Computational Linguistics.
    • (2002) Proc. of ACL, EMNLP '02 , pp. 257-264
    • Brill, E.1    Dumais, S.2    Banko, M.3
  • 7
    • 0142030258 scopus 로고    scopus 로고
    • A taxonomy of web search
    • Sept.
    • A. Broder. A taxonomy of web search. SIGIR Forum, 36(2):3-10, Sept. 2002.
    • (2002) SIGIR Forum , vol.36 , Issue.2 , pp. 3-10
    • Broder, A.1
  • 8
    • 84892474362 scopus 로고    scopus 로고
    • What do you see when you're surfing?: Using eye tracking to predict salient regions of web pages
    • ACM
    • G. Buscher, E. Cutrell, and M. R. Morris. What do you see when you're surfing?: using eye tracking to predict salient regions of web pages. In Proc. of CHI, CHI '09, pages 21-30. ACM, 2009.
    • (2009) Proc. of CHI, CHI '09 , pp. 21-30
    • Buscher, G.1    Cutrell, E.2    Morris, M.R.3
  • 9
    • 57349160283 scopus 로고    scopus 로고
    • Query expansion using gaze-based feedback on the subdocument level
    • G. Buscher, A. Dengel, and L. van Elst. Query expansion using gaze-based feedback on the subdocument level. In Proc. of SIGIR, 2008.
    • (2008) Proc. of SIGIR
    • Buscher, G.1    Dengel, A.2    Van Elst, L.3
  • 10
    • 77956032690 scopus 로고    scopus 로고
    • The good, the bad, and the random: An eye-tracking study of ad quality in web search
    • New York, NY, USA ACM
    • G. Buscher, S. T. Dumais, and E. Cutrell. The good, the bad, and the random: an eye-tracking study of ad quality in web search. In Proc. of ACM SIGIR, SIGIR '10, pages 42-49, New York, NY, USA, 2010. ACM.
    • (2010) Proc. of ACM SIGIR, SIGIR '10 , pp. 42-49
    • Buscher, G.1    Dumais, S.T.2    Cutrell, E.3
  • 11
    • 72449190651 scopus 로고    scopus 로고
    • Segment-level display time as implicit feedback: A comparison to eye tracking
    • G. Buscher, L. van Elst, and A. Dengel. Segment-level display time as implicit feedback: a comparison to eye tracking. In Proc. of SIGIR, 2009.
    • (2009) Proc. of SIGIR
    • Buscher, G.1    Van Elst, L.2    Dengel, A.3
  • 12
    • 57349109033 scopus 로고    scopus 로고
    • Overview of the trec 2007 question answering track
    • H. Dang, D. Kelly, and J. Lin. Overview of the trec 2007 question answering track. In Proc. of TREC-2007, 2007.
    • (2007) Proc. of TREC-2007
    • Dang, H.1    Kelly, D.2    Lin, J.3
  • 13
    • 80053408947 scopus 로고    scopus 로고
    • Bayesian query-focused summarization
    • H. Daumé III and D. Marcu. Bayesian query-focused summarization. In Proc. of ACL, 2006.
    • (2006) Proc. of ACL
    • Daumé III, H.1    Marcu, D.2
  • 14
    • 84978033855 scopus 로고    scopus 로고
    • Query-focused summarization by supervised sentence ranking and skewed word distributions
    • S. Fisher and B. Roark. Query-focused summarization by supervised sentence ranking and skewed word distributions. In Proc. of DUC, 2006.
    • (2006) Proc. of DUC
    • Fisher, S.1    Roark, B.2
  • 15
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J. H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5): pp. 1189-1232, 2001.
    • (2001) The Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 16
    • 85009080195 scopus 로고    scopus 로고
    • Summarizing text documents: Sentence selection and evaluation metrics
    • ACM
    • J. Goldstein, M. Kantrowitz, V. Mittal, and J. Carbonell. Summarizing text documents: sentence selection and evaluation metrics. In Proc. of SIGIR, pages 121-128. ACM, 1999.
    • (1999) Proc. of SIGIR , pp. 121-128
    • Goldstein, J.1    Kantrowitz, M.2    Mittal, V.3    Carbonell, J.4
  • 17
    • 57349185946 scopus 로고    scopus 로고
    • Exploring mouse movements for inferring query intent
    • Q. Guo and E. Agichtein. Exploring mouse movements for inferring query intent. In Proc. of SIGIR, 2008.
    • (2008) Proc. of SIGIR
    • Guo, Q.1    Agichtein, E.2
  • 18
    • 79952387027 scopus 로고    scopus 로고
    • Towards predicting web searcher gaze position from mouse movements
    • Q. Guo and E. Agichtein. Towards predicting web searcher gaze position from mouse movements. In Proc. of CHI. ACM, 2010.
    • (2010) Proc. of CHI. ACM
    • Guo, Q.1    Agichtein, E.2
  • 19
    • 84860857337 scopus 로고    scopus 로고
    • Beyond dwell time: Estimating document relevance from cursor movements and other post-click searcher behavior
    • Q. Guo and E. Agichtein. Beyond dwell time: estimating document relevance from cursor movements and other post-click searcher behavior. In Proc. of WWW, 2012.
    • (2012) Proc. of WWW
    • Guo, Q.1    Agichtein, E.2
  • 20
    • 84883127327 scopus 로고    scopus 로고
    • Mining touch interaction data on mobile devices to predict web search result relevance
    • Q. Guo, H. Jin, D. Lagun, S. Yuan, and E. Agichtein. Mining touch interaction data on mobile devices to predict web search result relevance. In Proc. of SIGIR, 2013.
    • (2013) Proc. of SIGIR
    • Guo, Q.1    Jin, H.2    Lagun, D.3    Yuan, S.4    Agichtein, E.5
  • 21
    • 80051481326 scopus 로고    scopus 로고
    • Using topic themes for multi-document summarization
    • July
    • S. Harabagiu and F. Lacatusu. Using topic themes for multi-document summarization. ACM Trans. Inf. Syst., 28(3):13:1-13:47, July 2010.
    • (2010) ACM Trans. Inf. Syst. , vol.28 , Issue.3 , pp. 131-1347
    • Harabagiu, S.1    Lacatusu, F.2
  • 22
    • 18744415438 scopus 로고    scopus 로고
    • Implicit user profiling for on demand relevance feedback
    • ACM
    • Y. Hijikata. Implicit user profiling for on demand relevance feedback. In Proc. of IUI, pages 198-205. ACM, 2004.
    • (2004) Proc. of IUI , pp. 198-205
    • Hijikata, Y.1
  • 23
    • 84862107258 scopus 로고    scopus 로고
    • User see, user point: Gaze and cursor alignment in web search
    • New York, NY, USA ACM
    • J. Huang, R. White, and G. Buscher. User see, user point: gaze and cursor alignment in web search. In Proc. of CHI, pages 1341-1350, New York, NY, USA, 2012. ACM.
    • (2012) Proc. of CHI , pp. 1341-1350
    • Huang, J.1    White, R.2    Buscher, G.3
  • 25
    • 84861019180 scopus 로고    scopus 로고
    • No clicks, no problem: Using cursor movements to understand and improve search
    • J. Huang, R. W. White, and S. Dumais. No clicks, no problem: using cursor movements to understand and improve search. In Proc. of CHI. ACM, 2011.
    • (2011) Proc. of CHI. ACM
    • Huang, J.1    White, R.W.2    Dumais, S.3
  • 26
    • 74549184509 scopus 로고    scopus 로고
    • Web search result summarization: Title selection algorithms and user satisfaction
    • T. Kanungo, N. Ghamrawi, K. Y. Kim, and L. Wai. Web search result summarization: title selection algorithms and user satisfaction. In Proc. of CIKM, 2009.
    • (2009) Proc. of CIKM
    • Kanungo, T.1    Ghamrawi, N.2    Kim, K.Y.3    Wai, L.4
  • 27
    • 70349138426 scopus 로고    scopus 로고
    • Predicting the readability of short web summaries
    • T. Kanungo and D. Orr. Predicting the readability of short web summaries. In Proc. of WSDM, 2009.
    • (2009) Proc. of WSDM
    • Kanungo, T.1    Orr, D.2
  • 28
    • 33845487544 scopus 로고    scopus 로고
    • Unsupervised multilingual sentence boundary detection
    • T. Kiss and J. Strunk. Unsupervised multilingual sentence boundary detection. Computational Linguistics, 32(4):485-525, 2006.
    • (2006) Computational Linguistics , vol.32 , Issue.4 , pp. 485-525
    • Kiss, T.1    Strunk, J.2
  • 29
    • 0029193387 scopus 로고
    • A trainable document summarizer
    • New York, NY, USA ACM
    • J. Kupiec, J. Pedersen, and F. Chen. A trainable document summarizer. In Proc. of SIGIR, SIGIR '95, pages 68-73, New York, NY, USA, 1995. ACM.
    • (1995) Proc. of SIGIR, SIGIR '95 , pp. 68-73
    • Kupiec, J.1    Pedersen, J.2    Chen, F.3
  • 30
    • 57549108344 scopus 로고    scopus 로고
    • Learning query intent from regularized click graphs
    • X. Li, Y.-Y. Wang, and A. Acero. Learning query intent from regularized click graphs. In Proc. of SIGIR, 2008.
    • (2008) Proc. of SIGIR
    • Li, X.1    Wang, Y.-Y.2    Acero, A.3
  • 33
    • 74549213003 scopus 로고    scopus 로고
    • Machine learned sentence selection strategies for query-biased summarization
    • D. Metzler and T. Kanungo. Machine learned sentence selection strategies for query-biased summarization. In SIGIR Learning to Rank Workshop, 2008.
    • (2008) SIGIR Learning to Rank Workshop
    • Metzler, D.1    Kanungo, T.2
  • 34
    • 77954581491 scopus 로고    scopus 로고
    • Inferring query intent from reformulations and clicks
    • F. Radlinski, M. Szummer, and N. Craswell. Inferring query intent from reformulations and clicks. In Proc. of WWW, 2010.
    • (2010) Proc. of WWW
    • Radlinski, F.1    Szummer, M.2    Craswell, N.3
  • 35
    • 77952352695 scopus 로고    scopus 로고
    • Eye-mouse coordination patterns on web search results pages
    • K. Rodden, X. Fu, A. Aula, and I. Spiro. Eye-mouse coordination patterns on web search results pages. In Proc. of CHI, 2008.
    • (2008) Proc. of CHI
    • Rodden, K.1    Fu, X.2    Aula, A.3    Spiro, I.4
  • 37
    • 0032279035 scopus 로고    scopus 로고
    • Advantages of query biased summaries in information retrieval
    • ACM
    • A. Tombros and M. Sanderson. Advantages of query biased summaries in information retrieval. In Proc. of SIGIR, pages 2-10. ACM, 1998.
    • (1998) Proc. of SIGIR , pp. 2-10
    • Tombros, A.1    Sanderson, M.2
  • 39
    • 84866612028 scopus 로고    scopus 로고
    • Text selections as implicit relevance feedback
    • R. W. White and G. Buscher. Text selections as implicit relevance feedback. In Proc. of SIGIR, 2012.
    • (2012) Proc. of SIGIR
    • White, R.W.1    Buscher, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.