-
1
-
-
69249247411
-
Almost eigenvectors for almost commuting matrices
-
A. Bernstein Almost eigenvectors for almost commuting matrices SIAM J. Appl. Math. 21 1971 232 235
-
(1971)
SIAM J. Appl. Math.
, vol.21
, pp. 232-235
-
-
Bernstein, A.1
-
2
-
-
18844397855
-
How big can the commutator of two matrices be and how big is it typically?
-
A. Böttcher, and D. Wenzel How big can the commutator of two matrices be and how big is it typically? Linear Algebra Appl. 403 2005 216 228
-
(2005)
Linear Algebra Appl.
, vol.403
, pp. 216-228
-
-
Böttcher, A.1
Wenzel, D.2
-
3
-
-
49249122532
-
The Frobenius norm and the commutator
-
A. Böttcher, and D. Wenzel The Frobenius norm and the commutator Linear Algebra Appl. 429 2008 1864 1885
-
(2008)
Linear Algebra Appl.
, vol.429
, pp. 1864-1885
-
-
Böttcher, A.1
Wenzel, D.2
-
7
-
-
0027812550
-
Blind beamforming for non-Gaussian signals
-
J.F. Cardoso, and A. Souloumiac Blind beamforming for non-Gaussian signals Radar Signal Process. 140 1993 362 370
-
(1993)
Radar Signal Process.
, vol.140
, pp. 362-370
-
-
Cardoso, J.F.1
Souloumiac, A.2
-
13
-
-
70349972818
-
Making almost commuting matrices commute
-
M. Hastings Making almost commuting matrices commute Comm. Math. Phys. 291 2009 321 345
-
(2009)
Comm. Math. Phys.
, vol.291
, pp. 321-345
-
-
Hastings, M.1
-
15
-
-
84877616835
-
Coupled quasi-harmonic bases
-
A. Kovnatsky, M.M. Bronstein, A.M. Bronstein, K. Glashoff, and R. Kimmel Coupled quasi-harmonic bases Comput. Graph. Forum 32 2013 439 448
-
(2013)
Comput. Graph. Forum
, vol.32
, pp. 439-448
-
-
Kovnatsky, A.1
Bronstein, M.M.2
Bronstein, A.M.3
Glashoff, K.4
Kimmel, R.5
-
16
-
-
0000624542
-
Almost commuting selfadjoint matrices and applications
-
Amer. Math. Soc. Providence, RI
-
H. Lin Almost commuting selfadjoint matrices and applications Fields Inst. Commun. vol. 13 1997 Amer. Math. Soc. Providence, RI 193 233
-
(1997)
Fields Inst. Commun.
, vol.13 VOL.
, pp. 193-233
-
-
Lin, H.1
-
18
-
-
79957937914
-
Normal Scalar Curvature Conjecture and its applications
-
Z. Lu Normal Scalar Curvature Conjecture and its applications J. Funct. Anal. 261 2011 1284 1308
-
(2011)
J. Funct. Anal.
, vol.261
, pp. 1284-1308
-
-
Lu, Z.1
-
19
-
-
84857119564
-
Remarks on the Böttcher-Wenzel inequality
-
Z. Lu Remarks on the Böttcher-Wenzel inequality Linear Algebra Appl. 436 2012 2531 2535
-
(2012)
Linear Algebra Appl.
, vol.436
, pp. 2531-2535
-
-
Lu, Z.1
-
20
-
-
0003095621
-
Beweis des Ergodensatzes und des H-Theorems in der neuen Mechanik
-
J. von Neumann Beweis des Ergodensatzes und des H-Theorems in der neuen Mechanik Z. Phys. 57 1929 30 70
-
(1929)
Z. Phys.
, vol.57
, pp. 30-70
-
-
Von Neumann, J.1
-
21
-
-
84870219115
-
Functional maps: A flexible representation of maps between shapes
-
M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, and L. Guibas Functional maps: A flexible representation of maps between shapes Trans. Graph. 31 2012
-
(2012)
Trans. Graph.
, vol.31
-
-
Ovsjanikov, M.1
Ben-Chen, M.2
Solomon, J.3
Butscher, A.4
Guibas, L.5
-
22
-
-
0040782649
-
Almost commuting matrices
-
C. Pearcy, and A. Shields Almost commuting matrices J. Funct. Anal. 33 1979 332 338
-
(1979)
J. Funct. Anal.
, vol.33
, pp. 332-338
-
-
Pearcy, C.1
Shields, A.2
-
23
-
-
84950826016
-
Computing discrete minimal surfaces and their conjugates
-
U. Pinkall, and K. Polthier Computing discrete minimal surfaces and their conjugates Experiment. Math. 2 1993 15 36
-
(1993)
Experiment. Math.
, vol.2
, pp. 15-36
-
-
Pinkall, U.1
Polthier, K.2
-
24
-
-
21444433091
-
Almost commuting self-adjoint matrices - A short proof of Huaxin Lins theorem
-
M. Rordam, and P. Friis Almost commuting self-adjoint matrices - a short proof of Huaxin Lins theorem J. Reine Angew. Math. 479 1996 121 132
-
(1996)
J. Reine Angew. Math.
, vol.479
, pp. 121-132
-
-
Rordam, M.1
Friis, P.2
-
25
-
-
84865146630
-
Who invented the delta method?
-
J.M. Ver Hoef Who invented the delta method? Amer. Statist. 66 2012 124 127
-
(2012)
Amer. Statist.
, vol.66
, pp. 124-127
-
-
Ver Hoef, J.M.1
-
26
-
-
61449122296
-
Proof of Böttcher and Wenzels conjecture
-
S.W. Vong, and X.Q. Jin Proof of Böttcher and Wenzels conjecture Oper. Matrices 2 2008 435 442
-
(2008)
Oper. Matrices
, vol.2
, pp. 435-442
-
-
Vong, S.W.1
Jin, X.Q.2
|