메뉴 건너뛰기




Volumn 62, Issue 9, 2013, Pages 1203-1226

A differential inclusion-based approach for solving nonsmooth convex optimization problems

Author keywords

differential inclusion; globally asymptotically stability; neural network; nonsmooth convex optimization; steepest descent method

Indexed keywords


EID: 84881620402     PISSN: 02331934     EISSN: 10294945     Source Type: Journal    
DOI: 10.1080/02331934.2011.613993     Document Type: Article
Times cited : (6)

References (20)
  • 3
    • 33750885729 scopus 로고    scopus 로고
    • Non-smooth optimization methods for computation of the conditional value-at-risk and portfolio optimization
    • Beliakov, G and Bagirov, A. 2006. Non-smooth optimization methods for computation of the conditional value-at-risk and portfolio optimization. Optimization, 55: 459 - 479.
    • (2006) Optimization , vol.55 , pp. 459-479
    • Beliakov, G.1    Bagirov, A.2
  • 4
    • 67649321486 scopus 로고    scopus 로고
    • Subgradient-based neural networks for nonsmooth optimization problems
    • Bian, W and Xue, X. 2009. Subgradient-based neural networks for nonsmooth optimization problems. IEEE Trans. Neural Netw., 20: 1024 - 1038.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , pp. 1024-1038
    • Bian, W.1    Xue, X.2
  • 5
    • 77952306887 scopus 로고    scopus 로고
    • Generalized gradient projection neural networks for nonsmooth optimization problems
    • Cheng, LG, Shiji, S and Cheng, WU. 2010. Generalized gradient projection neural networks for nonsmooth optimization problems. Sci. China Ser. F-Inf. Sci., 53: 990 - 1004.
    • (2010) Sci. China Ser. F-Inf. Sci. , vol.53 , pp. 990-1004
    • Cheng, L.G.1    Shiji, S.2    Cheng, W.U.3
  • 7
    • 0003608428 scopus 로고
    • Differential Equations with Discontinuous Right-hand Side
    • Boston, MA, Boston,: Kluwer
    • Filippove, AF. 1988. " Differential Equations with Discontinuous Right-hand Side ". In Mathematics and its Applications (Soviet Series), Boston, MA: Kluwer.
    • (1988) Mathematics and its Applications (Soviet Series)
    • Filippove, A.F.1
  • 9
    • 58349093527 scopus 로고    scopus 로고
    • A hybrid descent method for convex optimization
    • Gerard, M, Schutter, BD and Verhaegen, M. 2009. A hybrid descent method for convex optimization. Automatica, 49: 525 - 531.
    • (2009) Automatica , vol.49 , pp. 525-531
    • Gerard, M.1    Schutter, B.D.2    Verhaegen, M.3
  • 10
    • 0021835689 scopus 로고
    • Neural computation decision in optimization problems
    • Hopfield, JJ and Tank, DW. 1985. Neural computation decision in optimization problems. Biol. Cybern., 52: 141 - 152.
    • (1985) Biol. Cybern. , vol.52 , pp. 141-152
    • Hopfield, J.J.1    Tank, D.W.2
  • 12
    • 33745875684 scopus 로고    scopus 로고
    • Subgradient-based feedback neural networks for non-differentiable convex optimization problems
    • Li, G, Song, S and Guan, X. 2006. Subgradient-based feedback neural networks for non-differentiable convex optimization problems. Sci. China Ser. F-Inf. Sci., 20: 421 - 435.
    • (2006) Sci. China Ser. F-Inf. Sci. , vol.20 , pp. 421-435
    • Li, G.1    Song, S.2    Guan, X.3
  • 14
    • 0001284544 scopus 로고    scopus 로고
    • A recurrent neural network for non-linear optimization with a continuously differentiable objective function and bound constraints
    • Liang, X and Wang, J. 1999. A recurrent neural network for non-linear optimization with a continuously differentiable objective function and bound constraints. IEEE Trans. Neural Netw., 11: 1251 - 1262.
    • (1999) IEEE Trans. Neural Netw. , vol.11 , pp. 1251-1262
    • Liang, X.1    Wang, J.2
  • 15
    • 14344258365 scopus 로고    scopus 로고
    • Variations Analysis and Generalized Differentiation, I: Basic Theory
    • Grundlehren Series, Springer, Berlin
    • Mordukhovich, B. 2006. " Variations Analysis and Generalized Differentiation, I: Basic Theory ". In (Fundamental Principles of Mathematical Sciences), Vol. 330, Grundlehren Series, Springer, Berlin.
    • (2006) Fundamental Principles of Mathematical Sciences , vol.330
    • Mordukhovich, B.1
  • 16
    • 14344258365 scopus 로고    scopus 로고
    • Variations Analysis and Generalized Differentiation, II: Applications
    • Grundlehren Series, Springer, Berlin
    • Mordukhovich, B. 2006. " Variations Analysis and Generalized Differentiation, II: Applications ". In (Fundamental Principles of Mathematical Sciences), Vol. 331, Grundlehren Series, Springer, Berlin.
    • (2006) Fundamental Principles of Mathematical Sciences , vol.331
    • Mordukhovich, B.1
  • 17
    • 0004226864 scopus 로고
    • International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York-Auckland-Dseldrof
    • W. Rudin, Principles of Mathematical Analysis, International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York-Auckland-Dseldrof, 1976
    • (1976) Principles of Mathematical Analysis
    • Rudin, W.1
  • 18
    • 77958007218 scopus 로고    scopus 로고
    • Nonsmooth optimization using Mordukhovich's subdifferential
    • Soleimani-damaneh, M. 2010. Nonsmooth optimization using Mordukhovich's subdifferential. SIAM J. Control Optim., 48: 3403 - 3432.
    • (2010) SIAM J. Control Optim. , vol.48 , pp. 3403-3432
    • Soleimani-damaneh, M.1
  • 19
    • 0036539447 scopus 로고    scopus 로고
    • A projection neural network and its application to constrained optimization problems
    • Xia, Y, Leung, H and Wang, J. 2002. A projection neural network and its application to constrained optimization problems. IEEE Trans. Circuits Syst. I: Fundamental Theory Appl., 49: 442 - 457.
    • (2002) IEEE Trans. Circuits Syst. I: Fundamental Theory Appl. , vol.49 , pp. 442-457
    • Xia, Y.1    Leung, H.2    Wang, J.3
  • 20
    • 15344350315 scopus 로고    scopus 로고
    • A recurrent neural network for non-linear convex programs subject to linear constraint
    • Xia, Y and Wang, J. 2005. A recurrent neural network for non-linear convex programs subject to linear constraint. IEEE Trans. Neural Netw., 16: 379 - 386.
    • (2005) IEEE Trans. Neural Netw. , vol.16 , pp. 379-386
    • Xia, Y.1    Wang, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.