-
1
-
-
0002454491
-
Sur l'espace de Banach engendré par les coefficients d'une représentation unitaire
-
Arsac, G.: Sur l'espace de Banach engendré par les coefficients d'une représentation unitaire. Publ. Dép. Math. (Lyon) 13, 1-101 (1976).
-
(1976)
Publ. Dép. Math. (Lyon)
, vol.13
, pp. 1-101
-
-
Arsac, G.1
-
2
-
-
51649183568
-
Compact semitopological inverse Clifford semigroups
-
Berglund, J. F.: Compact semitopological inverse Clifford semigroups. Semigroup Forum 5, 191-215 (1972).
-
(1972)
Semigroup Forum
, vol.5
, pp. 191-215
-
-
Berglund, J.F.1
-
3
-
-
79958810403
-
Subalgebras generated by extreme points in Fourier-Stieltjes algebras of locally compact groups
-
Cheng, Y.-H.: Subalgebras generated by extreme points in Fourier-Stieltjes algebras of locally compact groups. Studia Math. 202, 289-302 (2011).
-
(2011)
Studia Math.
, vol.202
, pp. 289-302
-
-
Cheng, Y.-H.1
-
4
-
-
0347169372
-
The Fourier-Stieltjes algebra of a semisimple group
-
Cowling, M.: The Fourier-Stieltjes algebra of a semisimple group. Colloq. Math. 41, 89-94 (1970).
-
(1970)
Colloq. Math.
, vol.41
, pp. 89-94
-
-
Cowling, M.1
-
5
-
-
0000724626
-
L'algèbre de Fourier d'un groupe localement compact
-
Eymard, P.: L'algèbre de Fourier d'un groupe localement compact. Bull. Soc. Math. France 92, 181-236 (1964).
-
(1964)
Bull. Soc. Math. France
, vol.92
, pp. 181-236
-
-
Eymard, P.1
-
8
-
-
23744456866
-
Amenability and weak amenability of the Fourier algebra
-
Forrest, B. E., Runde, V.: Amenability and weak amenability of the Fourier algebra. Math. Z. 250, 731-744 (2005).
-
(2005)
Math. Z.
, vol.250
, pp. 731-744
-
-
Forrest, B.E.1
Runde, V.2
-
9
-
-
0001568417
-
Cohomology and the operator space structure of the Fourier algebra and its second dual
-
Forrest, B. E., Wood, P. J.: Cohomology and the operator space structure of the Fourier algebra and its second dual. Indiana Univ. Math. J. 50, 1217-1240 (2001).
-
(2001)
Indiana Univ. Math. J.
, vol.50
, pp. 1217-1240
-
-
Forrest, B.E.1
Wood, P.J.2
-
10
-
-
0040650833
-
Plancherel formula for the 2 × 2 real unimodular group
-
Chandra, H.: Plancherel formula for the 2 × 2 real unimodular group. Proc. Nat. Acad. Sci. USA 38, 337-342 (1952).
-
(1952)
Proc. Nat. Acad. Sci. USA
, vol.38
, pp. 337-342
-
-
Chandra, H.1
-
11
-
-
76349094413
-
The spine of a Fourier-Stieltjes algebra
-
Ilie, M., Spronk, N.: The spine of a Fourier-Stieltjes algebra. Proc. Lond. Math. Soc. 94(3), 273-301 (2007).
-
(2007)
Proc. Lond. Math. Soc.
, vol.94
, Issue.3
, pp. 273-301
-
-
Ilie, M.1
Spronk, N.2
-
13
-
-
0000670833
-
Induced representations of locally compact groups I
-
Mackey, G. W.: Induced representations of locally compact groups I. Ann. Math. 55(2), 101-139 (1952).
-
(1952)
Ann. Math.
, vol.55
, Issue.2
, pp. 101-139
-
-
Mackey, G.W.1
-
15
-
-
0038903446
-
2(ℝ)
-
2(ℝ). Am. J. Math. 100, 747-774 (1978).
-
(1978)
Am. J. Math.
, vol.100
, pp. 747-774
-
-
Repka, J.1
-
17
-
-
33646736335
-
The amenability constant of the Fourier algebra
-
Runde, V.: The amenability constant of the Fourier algebra. Proc. Am. Math. Soc. 134, 1473-1481 (2006).
-
(2006)
Proc. Am. Math. Soc.
, vol.134
, pp. 1473-1481
-
-
Runde, V.1
-
18
-
-
76349101804
-
Operator amenability of Fourier-Stieltjes algebras II
-
Runde, V., Spronk, N.: Operator amenability of Fourier-Stieltjes algebras II. Bull. Lond. Math. Soc. 39, 194-202 (2007).
-
(2007)
Bull. Lond. Math. Soc.
, vol.39
, pp. 194-202
-
-
Runde, V.1
Spronk, N.2
-
19
-
-
0036901096
-
Operator weak amenability of the Fourier algebra
-
Spronk, N.: Operator weak amenability of the Fourier algebra. Proc. Am. Math. Soc. 130, 3609-3617 (2002).
-
(2002)
Proc. Am. Math. Soc.
, vol.130
, pp. 3609-3617
-
-
Spronk, N.1
-
20
-
-
84898854881
-
-
Warsaw: Institute of Mathematics, Polish Academic Science
-
Spronk, N.: Amenability properties of Fourier algebras and Fourier-Stieltjes algebras: a survey. Banach algebras 2009, 365-383, Banach Center Publications, vol. 91. Institute of Mathematics, Polish Academic Science, Warsaw (2010).
-
(2010)
Amenability Properties of Fourier Algebras and Fourier-Stieltjes Algebras: A Survey. Banach Algebras 2009, 365-383, Banach Center Publications
, vol.91
-
-
Spronk, N.1
|