메뉴 건너뛰기




Volumn 27, Issue 7-8, 2013, Pages 198-206

Quantitative analysis of tea using ytterbium-based internal standard near-infrared spectroscopy coupled with boosting least-squares support vector regression

Author keywords

Boosting least squares support vector regression; Near infrared spectroscopy; Total free amino acids; Total polyphenols; Ytterbium

Indexed keywords

AMINO ACIDS; CALIBRATION; INFRARED DEVICES; LEAST SQUARES APPROXIMATIONS; RARE EARTHS; REGRESSION ANALYSIS; SPECTROSCOPIC ANALYSIS; SPECTRUM ANALYSIS; VECTORS; YTTERBIUM; YTTERBIUM COMPOUNDS;

EID: 84881609100     PISSN: 08869383     EISSN: 1099128X     Source Type: Journal    
DOI: 10.1002/cem.2518     Document Type: Article
Times cited : (21)

References (26)
  • 2
    • 0042135862 scopus 로고
    • Near-infrared reflectance prediction of quality, theaflavin content and moisture content of black tea
    • Hall MN, Robertson A, Scotter CNG. Near-infrared reflectance prediction of quality, theaflavin content and moisture content of black tea. Food Chem. 1988; 27: 61-75.
    • (1988) Food Chem. , vol.27 , pp. 61-75
    • Hall, M.N.1    Robertson, A.2    Scotter, C.N.G.3
  • 3
    • 0033371675 scopus 로고    scopus 로고
    • Application of near-infrared reflectance spectroscopy to the simultaneous prediction of alkaloids and phenolic substances in green tea leaves
    • Schulz H, Engelhardt UH, Wegent A, Drews HH, Lapczynski S. Application of near-infrared reflectance spectroscopy to the simultaneous prediction of alkaloids and phenolic substances in green tea leaves. J. Agric. Food Chem. 1999; 47: 5064-5067.
    • (1999) J. Agric. Food Chem. , vol.47 , pp. 5064-5067
    • Schulz, H.1    Engelhardt, U.H.2    Wegent, A.3    Drews, H.H.4    Lapczynski, S.5
  • 4
    • 0037460631 scopus 로고    scopus 로고
    • Feasibility study for the use of near-infrared spectroscopy in the qualitative and quantitative analysis of green tea
    • Luypaert J, Zhang MH, Massart DL. Feasibility study for the use of near-infrared spectroscopy in the qualitative and quantitative analysis of green tea. Anal. Chim. Acta 2003; 478: 303-312.
    • (2003) Anal. Chim. Acta , vol.478 , pp. 303-312
    • Luypaert, J.1    Zhang, M.H.2    Massart, D.L.3
  • 5
    • 1042302187 scopus 로고    scopus 로고
    • Determination of total antioxidant capacity in green tea by near-infrared spectroscopy and multivariate calibration
    • Zhang MH, Luypaert J, Fernández Pierna JA, Xu QS, Massart DL. Determination of total antioxidant capacity in green tea by near-infrared spectroscopy and multivariate calibration. Talanta 2004; 62: 25-35.
    • (2004) Talanta , vol.62 , pp. 25-35
    • Zhang, M.H.1    Luypaert, J.2    Fernández Pierna, J.A.3    Xu, Q.S.4    Massart, D.L.5
  • 6
    • 33646196202 scopus 로고    scopus 로고
    • Simultaneous determination of total polyphenols and caffeine contents of green tea by near-infrared reflectance spectroscopy
    • Chen QS, Zhao JW, Huang XY, Zhang HD, Liu MH. Simultaneous determination of total polyphenols and caffeine contents of green tea by near-infrared reflectance spectroscopy. Microchem. J. 2006; 83: 42-47.
    • (2006) Microchem. J. , vol.83 , pp. 42-47
    • Chen, Q.S.1    Zhao, J.W.2    Huang, X.Y.3    Zhang, H.D.4    Liu, M.H.5
  • 7
    • 33646830788 scopus 로고    scopus 로고
    • Qualitative identification of tea categories by near infrared spectroscopy and support vector machine
    • Zhao JW, Chen QS, Huang XY, Fang CH. Qualitative identification of tea categories by near infrared spectroscopy and support vector machine. J. Pharm. Biomed. Anal. 2006; 41: 1198-1204.
    • (2006) J. Pharm. Biomed. Anal. , vol.41 , pp. 1198-1204
    • Zhao, J.W.1    Chen, Q.S.2    Huang, X.Y.3    Fang, C.H.4
  • 8
    • 33750955605 scopus 로고    scopus 로고
    • Discrimination of varieties of tea using near-infrared spectroscopy by principal component analysis and BP model
    • He Y, Li XL, Deng XF. Discrimination of varieties of tea using near-infrared spectroscopy by principal component analysis and BP model. J. Food Eng. 2007; 79: 1238-1242.
    • (2007) J. Food Eng. , vol.79 , pp. 1238-1242
    • He, Y.1    Li, X.L.2    Deng, X.F.3
  • 9
    • 85153992969 scopus 로고    scopus 로고
    • Sub-committee on ISO tea to meet in Calcutta next month
    • Airy A. Sub-committee on ISO tea to meet in Calcutta next month. http://www.expressindia.com/fe/daily/19991004/fco04012.html.
    • Airy, A.1
  • 10
    • 33847276241 scopus 로고    scopus 로고
    • Dry film method with ytterbium as the internal standard for near infrared spectroscopic plasma glucose assay coupled with boosting support vector regression
    • Zhou YP, Jiang JH, Wu HL, Shen GL, Yu RQ, Ozaki Y. Dry film method with ytterbium as the internal standard for near infrared spectroscopic plasma glucose assay coupled with boosting support vector regression. J. Chemometr. 2006; 20: 13-21.
    • (2006) J. Chemometr. , vol.20 , pp. 13-21
    • Zhou, Y.P.1    Jiang, J.H.2    Wu, H.L.3    Shen, G.L.4    Yu, R.Q.5    Ozaki, Y.6
  • 11
    • 0001781024 scopus 로고
    • Multivariate calibration problem in analytical chemistry solved by partial least-squares models in latent variables
    • Sjöström M, Wold S, Lindberg W, Persson JA, Martens HA. Multivariate calibration problem in analytical chemistry solved by partial least-squares models in latent variables. Anal. Chim. Acta 1983; 150: 61-70.
    • (1983) Anal. Chim. Acta , vol.150 , pp. 61-70
    • Sjöström, M.1    Wold, S.2    Lindberg, W.3    Persson, J.A.4    Martens, H.A.5
  • 12
    • 0032638628 scopus 로고    scopus 로고
    • Least-squares support vector machine classifiers
    • Suykens JAK, Vandewalle J. Least-squares support vector machine classifiers. Neural Process Lett. 1999; 9: 293-300.
    • (1999) Neural Process Lett. , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 14
    • 3042551400 scopus 로고    scopus 로고
    • Multivariate calibration with least-squares support vector machines
    • Thissen U, Üstün B, Melssen WJ, Buydens LMC. Multivariate calibration with least-squares support vector machines. Anal. Chem. 2004; 76: 3099-3105.
    • (2004) Anal. Chem. , vol.76 , pp. 3099-3105
    • Thissen, U.1    Üstün, B.2    Melssen, W.J.3    Buydens, L.M.C.4
  • 15
    • 80055071837 scopus 로고    scopus 로고
    • Developing novel and general descriptors for traditional Chinese medicine (TCM) formulas: a case study of quantitative formula-activity relationship (QFAR) model for hypertension prescriptions
    • Xu L, Deng DH, Jiang JH, Yu RQ, Wu XM, Zhao Y. Developing novel and general descriptors for traditional Chinese medicine (TCM) formulas: a case study of quantitative formula-activity relationship (QFAR) model for hypertension prescriptions. Chemom. Intell. Lab. Syst. 2011; 109: 186-191.
    • (2011) Chemom. Intell. Lab. Syst. , vol.109 , pp. 186-191
    • Xu, L.1    Deng, D.H.2    Jiang, J.H.3    Yu, R.Q.4    Wu, X.M.5    Zhao, Y.6
  • 16
    • 36149001400 scopus 로고    scopus 로고
    • Use of visible and near infrared spectroscopy and least squares-support vector machine to determine soluble solids content and pH of cola beverage
    • Liu F, He Y. Use of visible and near infrared spectroscopy and least squares-support vector machine to determine soluble solids content and pH of cola beverage. J. Agric. Food Chem. 2007; 55: 8883-8888.
    • (2007) J. Agric. Food Chem. , vol.55 , pp. 8883-8888
    • Liu, F.1    He, Y.2
  • 17
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire RE. The strength of weak learnability. Mach. Learning 1990; 5: 197-227.
    • (1990) Mach. Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 18
    • 79955366049 scopus 로고    scopus 로고
    • A robust boosting regression tree with applications in quantitative structure activity relationship studies of organic compounds
    • Jiao J, Tan SM, Luo RM, Zhou YP. A robust boosting regression tree with applications in quantitative structure activity relationship studies of organic compounds. J. Chem. Inf. Model. 2011; 51: 816-828.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 816-828
    • Jiao, J.1    Tan, S.M.2    Luo, R.M.3    Zhou, Y.P.4
  • 19
    • 77649200178 scopus 로고    scopus 로고
    • The ensemble bridge algorithm: a new modeling tool for drug discovery problems
    • Culp M. The ensemble bridge algorithm: a new modeling tool for drug discovery problems. J. Chem. Inf. Model. 2010; 50: 309-316.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 309-316
    • Culp, M.1
  • 20
    • 77952548488 scopus 로고    scopus 로고
    • An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis
    • Shao XG, Bian XH, Cai WS. An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis. Anal. Chim. Acta 2010; 666: 32-37.
    • (2010) Anal. Chim. Acta , vol.666 , pp. 32-37
    • Shao, X.G.1    Bian, X.H.2    Cai, W.S.3
  • 21
    • 84863021216 scopus 로고    scopus 로고
    • Boosting partial least-squares discriminant analysis with application to near infrared spectroscopic tea variety discrimination
    • Tan SM, Luo RM, Zhou YP, Xu H, Song DD, Tan Z, Yang TM, Nie Y. Boosting partial least-squares discriminant analysis with application to near infrared spectroscopic tea variety discrimination. J. Chemometr. 2012; 26: 34-39.
    • (2012) J. Chemometr. , vol.26 , pp. 34-39
    • Tan, S.M.1    Luo, R.M.2    Zhou, Y.P.3    Xu, H.4    Song, D.D.5    Tan, Z.6    Yang, T.M.7    Nie, Y.8
  • 22
    • 85153981222 scopus 로고    scopus 로고
    • Constructing least square support vector machines ensemble based on fuzzy integral. Proceedings of the 2006 International Conference on Machine Learning and Cybernetics. Dalian, China, 13-16 Aug ; .
    • Liu CM, Zhu LK. Constructing least square support vector machines ensemble based on fuzzy integral. Proceedings of the 2006 International Conference on Machine Learning and Cybernetics. Dalian, China, 13-16 Aug 2006; 5.
    • (2006) , pp. 5
    • Liu, C.M.1    Zhu, L.K.2
  • 24
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997; 55: 119-139.
    • (1997) J. Comput. Syst. Sci. , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 25
    • 0037186544 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • Friedman J. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002; 38: 367-378.
    • (2002) Comput. Stat. Data Anal. , vol.38 , pp. 367-378
    • Friedman, J.1
  • 26
    • 0037099131 scopus 로고    scopus 로고
    • Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data
    • Jiang JH, James BR, Siesler HW, Ozaki Y. Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data. Anal. Chem. 2002; 74: 3555-3565.
    • (2002) Anal. Chem. , vol.74 , pp. 3555-3565
    • Jiang, J.H.1    James, B.R.2    Siesler, H.W.3    Ozaki, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.