메뉴 건너뛰기




Volumn , Issue , 2013, Pages 64-69

Evaluation of feature selection algorithms for detection of depression from brain sMRI scans

Author keywords

brain image analysis; depression detection; feature selection; structural MRI

Indexed keywords

BRAIN IMAGE ANALYSIS; DETECTION ACCURACY; EXPERIMENTAL PROCEDURE; FEATURE EXTRACTION AND SELECTION; FEATURE SELECTION ALGORITHM; IMPORTANT FEATURES; INFORMATION GAIN; PRE-PROCESSING;

EID: 84881538409     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCME.2013.6548213     Document Type: Conference Paper
Times cited : (3)

References (23)
  • 1
    • 0003457873 scopus 로고    scopus 로고
    • mental health : new understanding, new hope
    • J. Sayers. The world health report 2001: mental health : new understanding, new hope.
    • (2001) The World Health Report
    • Sayers, J.1
  • 3
    • 84878729599 scopus 로고    scopus 로고
    • Towards automated detection of depression from brain structural magnetic resonance images
    • 01/01 2013
    • K. Kipli, A. Kouzani, and L. Williams, "Towards automated detection of depression from brain structural magnetic resonance images," Neuroradiology, pp. 1-18, 2013/01/01 2013.
    • (2013) Neuroradiology , pp. 1-18
    • Kipli, K.1    Kouzani, A.2    Williams, L.3
  • 4
    • 68149169975 scopus 로고    scopus 로고
    • Prognostic and diagnostic potential of the structural neuroanatomy of depression
    • S. G. Costafreda, C. Chu, J. Ashburner, and C. H. Y. Fu, "Prognostic and Diagnostic Potential of the Structural Neuroanatomy of Depression," PLoS ONE, vol. 4, p. e6353, 2009.
    • (2009) PLoS ONE , vol.4
    • Costafreda, S.G.1    Chu, C.2    Ashburner, J.3    Fu, C.H.Y.4
  • 5
    • 84860603285 scopus 로고    scopus 로고
    • Multicentre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder
    • May 1, 2012
    • B. Mwangi, K. P. Ebmeier, K. Matthews, and J. Douglas Steele, "Multicentre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder," Brain, vol. 135, pp. 1508-1521, May 1, 2012 2012.
    • (2012) Brain , vol.135 , pp. 1508-1521
    • Mwangi, B.1    Ebmeier, K.P.2    Matthews, K.3    Douglas Steele, J.4
  • 6
    • 40149084821 scopus 로고    scopus 로고
    • Pattern classification of sad facial processing: Toward the development of neurobiological markers in depression
    • C. H. Y. Fu, et al., "Pattern Classification of Sad Facial Processing: Toward the Development of Neurobiological Markers in Depression," Biological psychiatry, vol. 63, pp. 656-662, 2008.
    • (2008) Biological Psychiatry , vol.63 , pp. 656-662
    • Fu, C.H.Y.1
  • 7
    • 53549088324 scopus 로고    scopus 로고
    • Neuroanatomy of verbal working memory as a diagnostic biomarker for depression
    • A. F. Marquand, J. Mourao-Miranda, M. J. Brammer, A. J. Cleare, and C. H. Y. Fu, "Neuroanatomy of verbal working memory as a diagnostic biomarker for depression," NeuroReport, vol. 19, pp. 1507-1511, 2008.
    • (2008) NeuroReport , vol.19 , pp. 1507-1511
    • Marquand, A.F.1    Mourao-Miranda, J.2    Brammer, M.J.3    Cleare, A.J.4    Fu, C.H.Y.5
  • 8
    • 83755174702 scopus 로고    scopus 로고
    • Prediction of illness severity in patients with major depression using structural MR brain scans
    • B. Mwangi, K. Matthews, and J. D. Steele, "Prediction of illness severity in patients with major depression using structural MR brain scans," Journal of Magnetic Resonance Imaging, vol. 35, pp. 64-71, 2012.
    • (2012) Journal of Magnetic Resonance Imaging , vol.35 , pp. 64-71
    • Mwangi, B.1    Matthews, K.2    Steele, J.D.3
  • 9
    • 82455164245 scopus 로고    scopus 로고
    • Hybrid dendritic computing with kernel-lica applied to alzheimer's disease detection in mri
    • D. Chyzhyk, M. Grana, A. Savio, and J. Maiora, "Hybrid dendritic computing with kernel-LICA applied to Alzheimer's disease detection in MRI," Neurocomputing, vol. 75, pp. 72-77, 2012.
    • (2012) Neurocomputing , vol.75 , pp. 72-77
    • Chyzhyk, D.1    Grana, M.2    Savio, A.3    Maiora, J.4
  • 10
    • 52049116700 scopus 로고    scopus 로고
    • Combining multivariate voxel selection and support vector machines for mapping and classification of fmri spatial patterns
    • F. De Martino, et al., "Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns," NeuroImage, vol. 43, pp. 44-58, 2008.
    • (2008) NeuroImage , vol.43 , pp. 44-58
    • De Martino, F.1
  • 12
    • 84860631276 scopus 로고    scopus 로고
    • Identifying major depression using whole-brain functional connectivity: A multivariate pattern analysis
    • May 1, 2012
    • L.-L. Zeng, et al., "Identifying major depression using whole-brain functional connectivity: A multivariate pattern analysis," Brain, vol. 135, pp. 1498-1507, May 1, 2012 2012.
    • (2012) Brain , vol.135 , pp. 1498-1507
    • Zeng, L.-L.1
  • 13
    • 25144492516 scopus 로고    scopus 로고
    • Efficient Feature Selection via Analysis of Relevance and Redundancy
    • L. Yu and H. Liu, "Efficient Feature Selection via Analysis of Relevance and Redundancy," J. Mach. Learn. Res., vol. 5, pp. 12051224, 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 12051224
    • Yu, L.1    Liu, H.2
  • 14
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 15
    • 30344483921 scopus 로고    scopus 로고
    • On learning algorithm selection for classification
    • S. Ali and K. A. Smith, "On learning algorithm selection for classification," Applied Soft Computing, vol. 6, pp. 119-138, 2006.
    • (2006) Applied Soft Computing , vol.6 , pp. 119-138
    • Ali, S.1    Smith, K.A.2
  • 16
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene Selection for Cancer Classification using Support Vector Machines," Mach. Learn., vol. 46, pp. 389-422, 2002.
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 17
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of relieff and rrelieff
    • M. Sikonja and I. Kononenko, "Theoretical and Empirical Analysis of ReliefF and RReliefF," Mach. Learn., vol. 53, pp. 23-69, 2003.
    • (2003) Mach. Learn. , vol.53 , pp. 23-69
    • Sikonja, M.1    Kononenko, I.2
  • 18
    • 7244250182 scopus 로고    scopus 로고
    • Data mining in bioinformatics using weka
    • October 12, 2004
    • E. Frank, M. Hall, L. Trigg, G. Holmes, and I. H. Witten, "Data mining in bioinformatics using Weka," Bioinformatics, vol. 20, pp. 2479-2481, October 12, 2004 2004.
    • (2004) Bioinformatics , vol.20 , pp. 2479-2481
    • Frank, E.1    Hall, M.2    Trigg, L.3    Holmes, G.4    Witten, I.H.5
  • 20
    • 84881506443 scopus 로고    scopus 로고
    • NIRL Imaging Database
    • NIRL Imaging Database [Online]. Available: http://nirlarc.duhs.duke.edu/ nirle/
  • 21
    • 0034663366 scopus 로고    scopus 로고
    • Hippocampal volume in geriatric depression
    • D. C. Steffens, et al., "Hippocampal volume in geriatric depression," Biological psychiatry, vol. 48, pp. 301-309, 2000.
    • (2000) Biological Psychiatry , vol.48 , pp. 301-309
    • Steffens, D.C.1
  • 22
    • 79952708926 scopus 로고    scopus 로고
    • Prognostic prediction of therapeutic response in depression using high-field MR imaging
    • Q. Gong, et al., "Prognostic prediction of therapeutic response in depression using high-field MR imaging," NeuroImage, vol. 55, pp. 1497-1503, 2011.
    • (2011) NeuroImage , vol.55 , pp. 1497-1503
    • Gong, Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.