메뉴 건너뛰기




Volumn 52, Issue 36, 2013, Pages 12673-12688

Neural networks applied in chemistry. II. Neuro-evolutionary techniques in process modeling and optimization

Author keywords

[No Author keywords available]

Indexed keywords

CONTROL DYNAMIC; IN-PROCESS; MODELING METHODOLOGY; NEURAL MODELING;

EID: 84881536787     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie4000954     Document Type: Review
Times cited : (21)

References (186)
  • 1
    • 55349116093 scopus 로고    scopus 로고
    • Process modelling and optimization strategies integrating neural networks and differential evolution
    • Special Report
    • Lahiri, S. K.; Khalfe, N.; Garawi, M. A. Process modelling and optimization strategies integrating neural networks and differential evolution Hydrocarbon Proc. 2008, Special Report) 35
    • (2008) Hydrocarbon Proc. , pp. 35
    • Lahiri, S.K.1    Khalfe, N.2    Garawi, M.A.3
  • 2
    • 33646169128 scopus 로고    scopus 로고
    • Multiobjective optimization of synthesis gas production using non-dominated sorting genetic algorithm
    • Mohanty, S. Multiobjective optimization of synthesis gas production using non-dominated sorting genetic algorithm Comput. Chem. Eng. 2006, 30, 1019
    • (2006) Comput. Chem. Eng. , vol.30 , pp. 1019
    • Mohanty, S.1
  • 3
    • 0035058165 scopus 로고    scopus 로고
    • A comparative study of multiobjective optimization methods in structural design
    • Sunar, M.; Kahraman, R. A comparative study of multiobjective optimization methods in structural design Turk. J. Eng. Environ. Sci. 2001, 25, 69
    • (2001) Turk. J. Eng. Environ. Sci. , vol.25 , pp. 69
    • Sunar, M.1    Kahraman, R.2
  • 4
    • 84954943722 scopus 로고
    • Neural networks for nonlinear dynamic system modeling and identification
    • Chen, S.; Billings, S. A. Neural networks for nonlinear dynamic system modeling and identification Int. J. Control. 1992, 56, 319
    • (1992) Int. J. Control. , vol.56 , pp. 319
    • Chen, S.1    Billings, S.A.2
  • 5
    • 33646143005 scopus 로고    scopus 로고
    • Genetic algorithms for optimization of predictive ecosystems models based on decision trees and neural networks
    • D'heygere, T.; Goethals, P. L. M.; De Pauw, N. Genetic algorithms for optimization of predictive ecosystems models based on decision trees and neural networks Ecol. Model 2006, 195, 20
    • (2006) Ecol. Model , vol.195 , pp. 20
    • D'Heygere, T.1    Goethals, P.L.M.2    De Pauw, N.3
  • 8
    • 77949266538 scopus 로고    scopus 로고
    • A multi-objective memetic and hybrid methodology for optimizing the parameters and performance of artificial neural networks
    • Almeida, L. M.; Ludermir, T. B. A multi-objective memetic and hybrid methodology for optimizing the parameters and performance of artificial neural networks Neurocomputing 2010, 73, 1438
    • (2010) Neurocomputing , vol.73 , pp. 1438
    • Almeida, L.M.1    Ludermir, T.B.2
  • 9
    • 33847675397 scopus 로고    scopus 로고
    • Optimizing feedforward artificial neural network architecture
    • Benardos, P. G.; Vosniakos, G. C. Optimizing feedforward artificial neural network architecture Eng. Appl. Artif. Intell. 2007, 20, 365
    • (2007) Eng. Appl. Artif. Intell. , vol.20 , pp. 365
    • Benardos, P.G.1    Vosniakos, G.C.2
  • 10
    • 84857239400 scopus 로고    scopus 로고
    • Neural networks applied in chemistry. I. Determination of the optimal topology of neural networks
    • Curteanu, S.; Cartwright, H. Neural networks applied in chemistry. I. Determination of the optimal topology of neural networks J. Chemom. 2011, 25, 527
    • (2011) J. Chemom. , vol.25 , pp. 527
    • Curteanu, S.1    Cartwright, H.2
  • 14
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Xin, Y. Evolving artificial neural networks Proc. IEEE 1999, 87, 1423
    • (1999) Proc. IEEE , vol.87 , pp. 1423
    • Xin, Y.1
  • 16
    • 0002472452 scopus 로고
    • Genetic algorithms and the optimal allocation of trials
    • Holland, J. H. Genetic algorithms and the optimal allocation of trials SIAM J. Comput. 1973, 2, 88
    • (1973) SIAM J. Comput. , vol.2 , pp. 88
    • Holland, J.H.1
  • 18
    • 84994998021 scopus 로고
    • The Genetic Algorithm in Science
    • Cartwright, H. M. The Genetic Algorithm in Science Pestic. Sci. 1995, 45, 171
    • (1995) Pestic. Sci. , vol.45 , pp. 171
    • Cartwright, H.M.1
  • 19
    • 0042968651 scopus 로고    scopus 로고
    • Chaos-genetic algorithms for optimizing the operating conditions based on RBF-PLS model
    • Yan, X. F.; Chen, D. Z.; Hu, S. X. Chaos-genetic algorithms for optimizing the operating conditions based on RBF-PLS model Comput. Chem. Eng. 2003, 27, 1393
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 1393
    • Yan, X.F.1    Chen, D.Z.2    Hu, S.X.3
  • 20
    • 0027693102 scopus 로고
    • Simultaneous optimization of chemical flowshop sequencing and topology using Genetic Algorithms
    • Cartwright, H. M.; Long, R. A. Simultaneous optimization of chemical flowshop sequencing and topology using Genetic Algorithms Ind. Eng. Chem. Res. 1993, 32, 2706
    • (1993) Ind. Eng. Chem. Res. , vol.32 , pp. 2706
    • Cartwright, H.M.1    Long, R.A.2
  • 21
    • 0027881095 scopus 로고
    • Analysis of the distribution of airborne pollution using genetic algorithms
    • Cartwright, H. M.; Harris, S. P. Analysis of the distribution of airborne pollution using genetic algorithms Atmos. Environ. A-Gen. 1993, 27, 1783
    • (1993) Atmos. Environ. A-Gen. , vol.27 , pp. 1783
    • Cartwright, H.M.1    Harris, S.P.2
  • 22
    • 84884177055 scopus 로고
    • Genetic Algorithms and permutation problems: A comparison of recombination operators for neural net structure specification
    • Baltimore, Maryland, June 6
    • Hancock, P. Genetic Algorithms and permutation problems: A comparison of recombination operators for neural net structure specification. Proceedings of Genetic Algorithms and Neural Networks, COGANN-92, Baltimore, Maryland, June 6, 1992.
    • (1992) Proceedings of Genetic Algorithms and Neural Networks, COGANN-92
    • Hancock, P.1
  • 25
    • 84872380691 scopus 로고    scopus 로고
    • On the use of artificial neural networks to monitor a pharmaceutical freeze-drying process
    • DraÌgoi, E. N.; Curteanu, S.; Fissore, D. On the use of artificial neural networks to monitor a pharmaceutical freeze-drying process Dry. Technol. 2013, 31, 72
    • (2013) Dry. Technol. , vol.31 , pp. 72
    • Draìgoi, E.N.1    Curteanu, S.2    Fissore, D.3
  • 27
    • 81155154001 scopus 로고    scopus 로고
    • Multi-objective optimization of a stacked neural network using NSGA-II-QNSNN algorithm
    • FurtunaÌ, R.; Curteanu, S.; Leon, F. Multi-objective optimization of a stacked neural network using NSGA-II-QNSNN algorithm Appl. Soft Comput. 2012, 12 (1) 133
    • (2012) Appl. Soft Comput. , vol.12 , Issue.1 , pp. 133
    • Furtunaì, R.1    Curteanu, S.2    Leon, F.3
  • 28
    • 80052272376 scopus 로고    scopus 로고
    • Modeling of oxygen mass transfer in the presence of oxygen-vectors using neural networks developed by differential evolution algorithm
    • DraÌgoi, E. N.; Curteanu, S.; Leon, F.; Galaction, A. I.; Cascaval, D. Modeling of oxygen mass transfer in the presence of oxygen-vectors using neural networks developed by differential evolution algorithm Eng. Appl. Artif. Intel. 2011, 24, 1214
    • (2011) Eng. Appl. Artif. Intel. , vol.24 , pp. 1214
    • Draìgoi, E.N.1    Curteanu, S.2    Leon, F.3    Galaction, A.I.4    Cascaval, D.5
  • 29
    • 84856568957 scopus 로고    scopus 로고
    • Freeze-drying modeling and monitoring using a new neuro-evolutive technique
    • DraÌgoi, E. N.; Curteanu, S.; Fissore, D. Freeze-drying modeling and monitoring using a new neuro-evolutive technique Chem. Eng. Sci. 2012, 72, 195
    • (2012) Chem. Eng. Sci. , vol.72 , pp. 195
    • Draìgoi, E.N.1    Curteanu, S.2    Fissore, D.3
  • 30
    • 77955968143 scopus 로고    scopus 로고
    • Applying soft computing methods to fluorescence modelling of the polydimethylsiloxane/silica composites containing lanthanum
    • Curteanu, S.; Nistor, A.; Curteanu, A.; Airinei, A.; Cazacu, M. Applying soft computing methods to fluorescence modelling of the polydimethylsiloxane/ silica composites containing lanthanum J. Appl. Polym. Sci. 2010, 117, 3160
    • (2010) J. Appl. Polym. Sci. , vol.117 , pp. 3160
    • Curteanu, S.1    Nistor, A.2    Curteanu, A.3    Airinei, A.4    Cazacu, M.5
  • 32
    • 84866700994 scopus 로고    scopus 로고
    • A neuro-evolutive technique applied for predicting the liquid crystalline property of some organic compounds
    • DraÌgoi, E. N.; Curteanu, S.; Lisa, C. A neuro-evolutive technique applied for predicting the liquid crystalline property of some organic compounds Eng. Optimiz. 2012, 44, 1261
    • (2012) Eng. Optimiz. , vol.44 , pp. 1261
    • Draìgoi, E.N.1    Curteanu, S.2    Lisa, C.3
  • 34
    • 70349873857 scopus 로고    scopus 로고
    • Group search optimizer: An optimization algorithm inspired by animal searching behavior
    • He, S.; Wu, Q. H.; Saunders, J. R. Group search optimizer: an optimization algorithm inspired by animal searching behavior IEEE Trans. Evolut. Comput. 2009, 13 (5) 973
    • (2009) IEEE Trans. Evolut. Comput. , vol.13 , Issue.5 , pp. 973
    • He, S.1    Wu, Q.H.2    Saunders, J.R.3
  • 35
    • 83755206516 scopus 로고    scopus 로고
    • Improved group search optimizer based on cooperation among groups for feedforward networks training with weight decay
    • Silva, D. N. G.; Pacifico, L. D. S.; Ludermir, T. B. Improved group search optimizer based on cooperation among groups for feedforward networks training with weight decay Conf. Proc. IEEE Intl. Syst. Man Cyber. 2011, 2133
    • (2011) Conf. Proc. IEEE Intl. Syst. Man Cyber. , pp. 2133
    • Silva, D.N.G.1    Pacifico, L.D.S.2    Ludermir, T.B.3
  • 36
    • 0036139333 scopus 로고    scopus 로고
    • New hybrid neural network model for prediction of phase equilibrium in a two-phase extraction system
    • Gao, L.; Loney, N. W. New hybrid neural network model for prediction of phase equilibrium in a two-phase extraction system Ind. Eng. Chem. Res. 2002, 41, 112
    • (2002) Ind. Eng. Chem. Res. , vol.41 , pp. 112
    • Gao, L.1    Loney, N.W.2
  • 37
    • 0037442548 scopus 로고    scopus 로고
    • Use of genetic algorithms to select input variables in decision tree models for the prediction of benthic macroinvertebrates
    • D'heygere, T.; Goethals, P. L. M.; De Pauw, N. Use of genetic algorithms to select input variables in decision tree models for the prediction of benthic macroinvertebrates Ecol. Model 2003, 160, 291
    • (2003) Ecol. Model , vol.160 , pp. 291
    • D'Heygere, T.1    Goethals, P.L.M.2    De Pauw, N.3
  • 38
    • 74149088534 scopus 로고    scopus 로고
    • Selecting variables for habitat suitability of asellus (crustacea, isopoda) by applying input variable contribution methods to artificial neural network models
    • Mouton, A. M.; Dedecker, A. P.; Lek, S.; Goethals, P. L. M. selecting variables for habitat suitability of asellus (crustacea, isopoda) by applying input variable contribution methods to artificial neural network models environ. model. assess. 2010, 15, 65
    • (2010) Environ. Model. Assess. , vol.15 , pp. 65
    • Mouton, A.M.1    Dedecker, A.P.2    Lek, S.3    Goethals, P.L.M.4
  • 39
    • 0141703587 scopus 로고    scopus 로고
    • Using reconstructability analysis to select input variables for artificial neural networks
    • Shervais, S.; Zwick, M. Using reconstructability analysis to select input variables for artificial neural networks Proc. IEEE Intl. Joint Conf. Neural Networks 2003, 1-4, 3022
    • (2003) Proc. IEEE Intl. Joint Conf. Neural Networks , vol.14 , pp. 3022
    • Shervais, S.1    Zwick, M.2
  • 40
  • 41
    • 0003853519 scopus 로고
    • Differential evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces
    • International Computer Science Institute: Berkley, CA.
    • Storn, R. M.; Price, K. V. Differential evolution-A simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012; International Computer Science Institute: Berkley, CA, 1995.
    • (1995) Technical Report TR-95-012
    • Storn, R.M.1    Price, K.V.2
  • 43
    • 42449127855 scopus 로고    scopus 로고
    • Differential evolution and Levenberg Marquardt trained neural network scheme for nonlinear system identification
    • Subudhi, B.; Jena, D. Differential evolution and Levenberg Marquardt trained neural network scheme for nonlinear system identification Neural Process. Lett. 2008, 27, 285
    • (2008) Neural Process. Lett. , vol.27 , pp. 285
    • Subudhi, B.1    Jena, D.2
  • 44
    • 63049093090 scopus 로고    scopus 로고
    • A combined differential evolution and neural network approach to nonlinear system identification
    • University of Hyderabad, India, Nov. 19-21
    • Subudhi, B. A combined differential evolution and neural network approach to nonlinear system identification. Proceedings of TENCON 2008 IEEE Region 10 Conference, University of Hyderabad, India, Nov. 19-21, 2008
    • (2008) Proceedings of TENCON 2008 IEEE Region 10 Conference
    • Subudhi, B.1
  • 45
    • 0037191144 scopus 로고    scopus 로고
    • An improved differential evolution algorithm in training and encoding prior knowledge into feedforward networks with application in chemistry
    • Chen, C. W.; Chen, D. Z.; Cao, G. Z. An improved differential evolution algorithm in training and encoding prior knowledge into feedforward networks with application in chemistry Chemom. Intell. Lab. 2002, 64, 27
    • (2002) Chemom. Intell. Lab. , vol.64 , pp. 27
    • Chen, C.W.1    Chen, D.Z.2    Cao, G.Z.3
  • 46
    • 24144433474 scopus 로고    scopus 로고
    • A generic framework for constrained optimization using genetic algorithms
    • Venkatraman, S.; Yen, G. G. A generic framework for constrained optimization using genetic algorithms IEEE T. Evolut. Comput. 2005, 9, 424
    • (2005) IEEE T. Evolut. Comput. , vol.9 , pp. 424
    • Venkatraman, S.1    Yen, G.G.2
  • 47
    • 0242390999 scopus 로고    scopus 로고
    • Multi-objective optimization of an industrial fluidized-bed catalytic cracking unit (FCCU) using genetic algorithm (GA) with jumping genes operator
    • Kasat, R. B.; Gupta, S. K. Multi-objective optimization of an industrial fluidized-bed catalytic cracking unit (FCCU) using genetic algorithm (GA) with jumping genes operator Comput. Chem. Eng. 2003, 27, 1785
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 1785
    • Kasat, R.B.1    Gupta, S.K.2
  • 48
    • 72149088751 scopus 로고    scopus 로고
    • Biologically inspired optimization: A review
    • Tang, W. J.; Wu, Q. H. Biologically inspired optimization: A review Trans. Intl. Meas. Control. 2009, 31 (6) 495
    • (2009) Trans. Intl. Meas. Control. , vol.31 , Issue.6 , pp. 495
    • Tang, W.J.1    Wu, Q.H.2
  • 49
    • 84866630819 scopus 로고    scopus 로고
    • New approach for prediction of asphaltene precipitation due to natural depletion by using evolutionary algorithm concept
    • Ahmadi, M. A.; Shadizadeh, S. R. New approach for prediction of asphaltene precipitation due to natural depletion by using evolutionary algorithm concept Fuel 2012, 102, 716
    • (2012) Fuel , vol.102 , pp. 716
    • Ahmadi, M.A.1    Shadizadeh, S.R.2
  • 50
    • 84866986095 scopus 로고    scopus 로고
    • BP neural network based on PSO algorithm for temperature characteristics of gas nanosensor
    • Zhao, W. BP neural network based on PSO algorithm for temperature characteristics of gas nanosensor J. Comput. 2012, 7, 2318
    • (2012) J. Comput. , vol.7 , pp. 2318
    • Zhao, W.1
  • 52
    • 33748290030 scopus 로고    scopus 로고
    • Reliability optimization using multiobjective ant colony system approaches
    • Zhao, J. H.; Liu, Z.; Dao, M. T. Reliability optimization using multiobjective ant colony system approaches Reliab. Eng. Syst. Safe 2007, 92 (1) 109
    • (2007) Reliab. Eng. Syst. Safe , vol.92 , Issue.1 , pp. 109
    • Zhao, J.H.1    Liu, Z.2    Dao, M.T.3
  • 53
    • 80053383769 scopus 로고    scopus 로고
    • Linear and nonlinear quantitative structure-activity relationship modeling of the HIV-1 reverse transcriptase inhibiting activities of thiocarbamates
    • Goodarzi, M.; Freitas, M. P.; Vander Heyden, Y. Linear and nonlinear quantitative structure-activity relationship modeling of the HIV-1 reverse transcriptase inhibiting activities of thiocarbamates Anal. Chim. Acta 2011, 705, 166
    • (2011) Anal. Chim. Acta , vol.705 , pp. 166
    • Goodarzi, M.1    Freitas, M.P.2    Vander Heyden, Y.3
  • 54
    • 78649925428 scopus 로고    scopus 로고
    • Melt index prediction by RBF neural network optimized with an adaptive new ant colony optimization algorithm
    • Li, J.; Liu, X. Melt index prediction by RBF neural network optimized with an adaptive new ant colony optimization algorithm J. Appl. Polym. Sci. 2011, 119, 3093
    • (2011) J. Appl. Polym. Sci. , vol.119 , pp. 3093
    • Li, J.1    Liu, X.2
  • 55
    • 80055116416 scopus 로고    scopus 로고
    • Use of a Genetic Algorithm - Neural Network hybrid in the search for high-efficiency solid-state phosphors
    • Cartwright, H. M.; Leontjev, A. Use of a Genetic Algorithm-Neural Network hybrid in the search for high-efficiency solid-state phosphors WSEAS T. Comput. 2011, 10, 396
    • (2011) WSEAS T. Comput. , vol.10 , pp. 396
    • Cartwright, H.M.1    Leontjev, A.2
  • 56
    • 74049137227 scopus 로고    scopus 로고
    • Artificial neural network model with the parameter tuning assisted by a differential evolution technique: The study of the hold up of the slurry flow in a pipeline
    • Lahiri, S. K.; Ghanta, K. C. Artificial neural network model with the parameter tuning assisted by a differential evolution technique: The study of the hold up of the slurry flow in a pipeline Chem. Ind. Chem. Eng. Q. 2009, 15 (2) 103
    • (2009) Chem. Ind. Chem. Eng. Q. , vol.15 , Issue.2 , pp. 103
    • Lahiri, S.K.1    Ghanta, K.C.2
  • 57
    • 84869453281 scopus 로고    scopus 로고
    • Optimization methodology based on neural networks and self-adaptive differential evolution algorithm applied to an aerobic fermetation process
    • DraÌgoi, E. N.; Curteanu, S.; Galaction, A. I.; Caşcaval, D. Optimization methodology based on neural networks and self-adaptive differential evolution algorithm applied to an aerobic fermetation process Appl. Soft Comput. 2013, 13, 222
    • (2013) Appl. Soft Comput. , vol.13 , pp. 222
    • Draìgoi, E.N.1    Curteanu, S.2    Galaction, A.I.3    Caşcaval, D.4
  • 58
    • 34547336483 scopus 로고    scopus 로고
    • A novel group search optimizer inspired by animal behavioural ecology
    • Vancouver
    • He, S.; Wu, Q. H. A novel group search optimizer inspired by animal behavioural ecology; IEEE Congress on Evolutionary Computation: Vancouver, 2006.
    • (2006) IEEE Congress on Evolutionary Computation
    • He, S.1    Wu, Q.H.2
  • 59
    • 84865345080 scopus 로고    scopus 로고
    • A group search optimization based on improved small world and its application on neural network training in ammonia synthesis
    • Yan, X.; Yang, W.; Shi, H. A group search optimization based on improved small world and its application on neural network training in ammonia synthesis Neurocomputing 2012, 97, 94
    • (2012) Neurocomputing , vol.97 , pp. 94
    • Yan, X.1    Yang, W.2    Shi, H.3
  • 60
    • 77955985274 scopus 로고    scopus 로고
    • Evolving neural network optimization of cholesteryl ester separation by reversed-phase HPLC
    • Jansen, M. A.; Kiwata, J.; Arceo, J.; Faull, K. F.; Hanrahan, G.; Porter, E. Evolving neural network optimization of cholesteryl ester separation by reversed-phase HPLC Anal. Bioanal. Chem. 2010, 397, 2367
    • (2010) Anal. Bioanal. Chem. , vol.397 , pp. 2367
    • Jansen, M.A.1    Kiwata, J.2    Arceo, J.3    Faull, K.F.4    Hanrahan, G.5    Porter, E.6
  • 62
    • 27144471158 scopus 로고
    • Factor-analysis of the tungsten(VI)-Rutin system
    • Cartwright, H. M. Factor-analysis of the tungsten(VI)-Rutin system Michrochem. J. 1986, 34, 313
    • (1986) Michrochem. J. , vol.34 , pp. 313
    • Cartwright, H.M.1
  • 64
    • 0041304628 scopus 로고    scopus 로고
    • Genetic algorithm development for multi-objective optimization of batch free-radical polymerization reactors
    • Silva, C. M.; Biscaia, E. C. Genetic algorithm development for multi-objective optimization of batch free-radical polymerization reactors Comput. Chem. Eng. 2003, 27, 1329
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 1329
    • Silva, C.M.1    Biscaia, E.C.2
  • 65
    • 18144384810 scopus 로고    scopus 로고
    • Multi-objective optimal synthesis and design of froth flotation circuits for mineral processing, using the jumping gene adaptation of genetic algorithm
    • Guria, C.; Verma, M.; Mehrotra, S. P.; Gupta, S. K. Multi-objective optimal synthesis and design of froth flotation circuits for mineral processing, using the jumping gene adaptation of genetic algorithm Ind. Eng. Chem. Res. 2005, 44, 2621
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 2621
    • Guria, C.1    Verma, M.2    Mehrotra, S.P.3    Gupta, S.K.4
  • 66
    • 11144229601 scopus 로고    scopus 로고
    • Multiobjective optimization of an industrial ethylene reactor using a nondominated sorting genetic algorithm
    • Tarafder, A.; Lee, B. C. S.; Ray, A. K.; Rangaiah, G. P. Multiobjective optimization of an industrial ethylene reactor using a nondominated sorting genetic algorithm Ind. Eng. Chem. Res. 2005, 44, 124
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 124
    • Tarafder, A.1    Lee, B.C.S.2    Ray, A.K.3    Rangaiah, G.P.4
  • 67
    • 33747878550 scopus 로고    scopus 로고
    • Modified differential evolution (MDE) for optimization, of non-linear chemical processes
    • Babu, B. V.; Angira, R. Modified differential evolution (MDE) for optimization, of non-linear chemical processes Comput. Chem. Eng. 2006, 30, 989
    • (2006) Comput. Chem. Eng. , vol.30 , pp. 989
    • Babu, B.V.1    Angira, R.2
  • 68
    • 3042720701 scopus 로고    scopus 로고
    • Optimal control of fed-batch fermentation involving multiple feeds using differential evolution
    • Kapadi, M. D.; Gudi, R. D. Optimal control of fed-batch fermentation involving multiple feeds using differential evolution Process. Biochem. 2004, 39, 1709
    • (2004) Process. Biochem. , vol.39 , pp. 1709
    • Kapadi, M.D.1    Gudi, R.D.2
  • 69
    • 72249100100 scopus 로고    scopus 로고
    • Performance comparison of differential evolution techniques on optimization of feeding profile for an industrial scale baker's yeast fermentation process
    • Yüzgeç, U. Performance comparison of differential evolution techniques on optimization of feeding profile for an industrial scale baker's yeast fermentation process Intl. Soc. Automat. Trans. 2010, 49, 167
    • (2010) Intl. Soc. Automat. Trans. , vol.49 , pp. 167
    • Yüzgeç, U.1
  • 70
    • 77649265048 scopus 로고    scopus 로고
    • A New Strategy of Integrated Control and On-line Optimization on High-purity Distillation Process
    • Lü, W.; Zhu, Y.; Huang, D.; Jiang, Y. A New Strategy of Integrated Control and On-line Optimization on High-purity Distillation Process Chinese J. Chem. Eng. 2010, 18 (1) 66
    • (2010) Chinese J. Chem. Eng. , vol.18 , Issue.1 , pp. 66
    • Lü, W.1    Zhu, Y.2    Huang, D.3    Jiang, Y.4
  • 71
    • 0027224655 scopus 로고
    • Application of fuzzy control in chemical distillation processes
    • Klett, G. Application of fuzzy control in chemical distillation processes Proc. 2nd IEEE Intl. Conf. Fuzzy Syst. 1993, 1, 375
    • (1993) Proc. 2nd IEEE Intl. Conf. Fuzzy Syst. , vol.1 , pp. 375
    • Klett, G.1
  • 72
    • 84860447021 scopus 로고    scopus 로고
    • Modeling a paper-making wastewater treatment process by means of an adaptive network-based fuzzy inference system and principal component analysis
    • Huang, M.; Ma, Y.; Wan, J.; Zhang, H.; Wang, Y. Modeling a paper-making wastewater treatment process by means of an adaptive network-based fuzzy inference system and principal component analysis Ind. Eng. Chem. Res. 2012, 51, 6166
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 6166
    • Huang, M.1    Ma, Y.2    Wan, J.3    Zhang, H.4    Wang, Y.5
  • 73
    • 0141819090 scopus 로고    scopus 로고
    • PI predictive fuzzy controllers for electrical drive speed control: Methods and software for stable development
    • Precup, R.-E.; Preitl, S.; Faur, G. PI predictive fuzzy controllers for electrical drive speed control: Methods and software for stable development Comput. Ind. 2003, 52, 253
    • (2003) Comput. Ind. , vol.52 , pp. 253
    • Precup, R.-E.1    Preitl, S.2    Faur, G.3
  • 74
    • 38449117015 scopus 로고    scopus 로고
    • Optimization strategy based on genetic algorithms and neural networks applied to a polymerization process
    • Curteanu, S.; Leon, F. Optimization strategy based on genetic algorithms and neural networks applied to a polymerization process Int. J. Quantum Chem. 2008, 108, 617
    • (2008) Int. J. Quantum Chem. , vol.108 , pp. 617
    • Curteanu, S.1    Leon, F.2
  • 75
    • 36248943039 scopus 로고    scopus 로고
    • Neural networks and genetic algorithms used for modeling and optimization of the siloxane-siloxane copolymers synthesis
    • Curteanu, S.; Cazacu, M. Neural networks and genetic algorithms used for modeling and optimization of the siloxane-siloxane copolymers synthesis J. Macromol. Sci. A. 2007, A45 (1) 23
    • (2007) J. Macromol. Sci. A. , vol.45 , Issue.1 , pp. 23
    • Curteanu, S.1    Cazacu, M.2
  • 76
    • 50649104612 scopus 로고    scopus 로고
    • Genetic algorithms and neural networks based optimization applied to the wastewater decolorization by photocatalytic reaction
    • Suditu, G. D.; Secula, M.; Piuleac, C. G.; Curteanu, S.; Poulios, I. Genetic algorithms and neural networks based optimization applied to the wastewater decolorization by photocatalytic reaction Rev. Chim.-Bucharest 2008, 7, 816
    • (2008) Rev. Chim.-Bucharest , vol.7 , pp. 816
    • Suditu, G.D.1    Secula, M.2    Piuleac, C.G.3    Curteanu, S.4    Poulios, I.5
  • 77
    • 77958562794 scopus 로고    scopus 로고
    • Optimization by NN-GA technique of the metal complexing process - Potential application in wastewater treatment
    • Piuleac, C. G.; Curteanu, S.; Cazacu, M. Optimization by NN-GA technique of the metal complexing process-Potential application in wastewater treatment Environ. Eng. Manage. J. 2010, 9 (2) 239
    • (2010) Environ. Eng. Manage. J. , vol.9 , Issue.2 , pp. 239
    • Piuleac, C.G.1    Curteanu, S.2    Cazacu, M.3
  • 78
    • 61849183127 scopus 로고    scopus 로고
    • Neural networks and genetic algorithms optimization of the photocatalytic degradation of alcian blue 8gx
    • Caliman, F. A.; Curteanu, C.; Betianu, C.; Gavrilescu, M.; Poulios, I. Neural networks and genetic algorithms optimization of the photocatalytic degradation of alcian blue 8gx J. Adv. Oxid. Technol. 2008, 11 (2) 316
    • (2008) J. Adv. Oxid. Technol. , vol.11 , Issue.2 , pp. 316
    • Caliman, F.A.1    Curteanu, C.2    Betianu, C.3    Gavrilescu, M.4    Poulios, I.5
  • 79
    • 83455253642 scopus 로고    scopus 로고
    • NSGA-II-JG applied to multiobjective optimization of polymeric nanoparticles synthesis with silicone surfactants
    • FurtunaÌ, R.; Curteanu, S.; Racleş, C. NSGA-II-JG applied to multiobjective optimization of polymeric nanoparticles synthesis with silicone surfactants Cent. Eur. J. Chem. 2011, 9 (6) 1080
    • (2011) Cent. Eur. J. Chem. , vol.9 , Issue.6 , pp. 1080
    • Furtunaì, R.1    Curteanu, S.2    Racleş, C.3
  • 80
    • 78649869171 scopus 로고    scopus 로고
    • Regime identification of slurry transport in pipelines - A novel modeling approach using ANN and differential evolution
    • Lahiri, S. K.; Ghanta, K. C. Regime identification of slurry transport in pipelines-A novel modeling approach using ANN and differential evolution Chem. Ind. Chem. Eng. Q. 2010, 16 (4) 329
    • (2010) Chem. Ind. Chem. Eng. Q. , vol.16 , Issue.4 , pp. 329
    • Lahiri, S.K.1    Ghanta, K.C.2
  • 81
    • 40049107015 scopus 로고    scopus 로고
    • Predictive control of SOFC based on GA-RBF neural network model
    • Wu, X. J.; Zhu, X. J.; Cao, G. Y.; Tu, H. Y. Predictive control of SOFC based on GA-RBF neural network model J. Power Sources 2008, 179 (1) 232
    • (2008) J. Power Sources , vol.179 , Issue.1 , pp. 232
    • Wu, X.J.1    Zhu, X.J.2    Cao, G.Y.3    Tu, H.Y.4
  • 82
    • 69249219130 scopus 로고    scopus 로고
    • Developing monthly operating rules for a cascade system of reservoirs: Application of Bayesian Networks
    • Malekmohammadi, B.; Kerachian, R.; Zahraie, B. Developing monthly operating rules for a cascade system of reservoirs: Application of Bayesian Networks Environ. Modell. Software 2009, 24, 1420
    • (2009) Environ. Modell. Software , vol.24 , pp. 1420
    • Malekmohammadi, B.1    Kerachian, R.2    Zahraie, B.3
  • 83
    • 0035435328 scopus 로고    scopus 로고
    • Feedforward networks based on prior knowledge and its application in modeling the true boiling point curve of the crude oil
    • Chen, C. W.; Chen, D. Z.; Ye, S. X. Feedforward networks based on prior knowledge and its application in modeling the true boiling point curve of the crude oil J. Chem. Eng. Chin. Univ. 2001, 15 (4) 351
    • (2001) J. Chem. Eng. Chin. Univ. , vol.15 , Issue.4 , pp. 351
    • Chen, C.W.1    Chen, D.Z.2    Ye, S.X.3
  • 84
    • 0034740046 scopus 로고    scopus 로고
    • Prior-knowledge-based feedforward network simulation of true boiling point curve of crude oil
    • Chen, C. W.; Chen, D. Z.; Wu, S. X. Prior-knowledge-based feedforward network simulation of true boiling point curve of crude oil Comput. Chem. 2001, 25, 541
    • (2001) Comput. Chem. , vol.25 , pp. 541
    • Chen, C.W.1    Chen, D.Z.2    Wu, S.X.3
  • 85
    • 42449135038 scopus 로고    scopus 로고
    • Identification and control of dynamical systems using neural networks
    • Narendra, K. S.; Parthaasarathy, K. Identification and control of dynamical systems using neural networks IEEE Trans. Neural Networks 2005, 16, 8624
    • (2005) IEEE Trans. Neural Networks , vol.16 , pp. 8624
    • Narendra, K.S.1    Parthaasarathy, K.2
  • 86
    • 77957914596 scopus 로고    scopus 로고
    • A differential evolution based neural network approach to nonlinear system identification
    • Subudhi, B.; Jena, D. A differential evolution based neural network approach to nonlinear system identification Appl. Soft Comput. 2011, 11, 861
    • (2011) Appl. Soft Comput. , vol.11 , pp. 861
    • Subudhi, B.1    Jena, D.2
  • 87
    • 57649221780 scopus 로고    scopus 로고
    • Stochastic sampling design using a multi-objective genetic algorithm and adaptive neural networks
    • Behzadian, K.; Kapelan, Z.; Savic, D.; Ardeshir, A. Stochastic sampling design using a multi-objective genetic algorithm and adaptive neural networks Environ. Modell. Software 2009, 24, 530
    • (2009) Environ. Modell. Software , vol.24 , pp. 530
    • Behzadian, K.1    Kapelan, Z.2    Savic, D.3    Ardeshir, A.4
  • 88
    • 33750283384 scopus 로고    scopus 로고
    • Performance of modified differential evolution for optimal design of complex and non-linear chemical processes
    • Angira, R.; Babu, B. V. Performance of modified differential evolution for optimal design of complex and non-linear chemical processes J. Exp. Theor. Artif. Intell. 2006, 18, 501
    • (2006) J. Exp. Theor. Artif. Intell. , vol.18 , pp. 501
    • Angira, R.1    Babu, B.V.2
  • 89
    • 20344404492 scopus 로고    scopus 로고
    • Multiobjective differential evolution (MODE) for optimization of adiabatic styrene reactor
    • Babu, B. V.; Chakole, P. G.; Syed Mubeen, J. H. Multiobjective differential evolution (MODE) for optimization of adiabatic styrene reactor Chem. Eng. Sci. 2005, 60, 4822
    • (2005) Chem. Eng. Sci. , vol.60 , pp. 4822
    • Babu, B.V.1    Chakole, P.G.2    Syed Mubeen, J.H.3
  • 90
    • 61449197826 scopus 로고    scopus 로고
    • Improved multiobjective differential evolution (MODE) approach for purified terephthalic acid (PTA) oxidation process
    • Gujarathi, A. M.; Babu, B. V. Improved multiobjective differential evolution (MODE) approach for purified terephthalic acid (PTA) oxidation process Mater. Manuf. Process 2009, 24, 303
    • (2009) Mater. Manuf. Process , vol.24 , pp. 303
    • Gujarathi, A.M.1    Babu, B.V.2
  • 91
    • 79959480556 scopus 로고    scopus 로고
    • Comparison between different methods for developing neural network topology applied to a complex polymerization process
    • IEEE, Barcelona, Spain, July 18-23.
    • Curteanu, S.; Leon, F.; Furtuna, R.; Dragoi, E. N.; Curteanu, N. Comparison between different methods for developing neural network topology applied to a complex polymerization process. The 2010 International Joint Conference on Neural Networks IJCNN, IEEE, Barcelona, Spain, July 18-23, 2010, 1.
    • (2010) The 2010 International Joint Conference on Neural Networks IJCNN , pp. 1
    • Curteanu, S.1    Leon, F.2    Furtuna, R.3    Dragoi, E.N.4    Curteanu, N.5
  • 92
    • 79953327578 scopus 로고    scopus 로고
    • Genetic algorithm optimization in drug design QSAR: Bayesian-regularized genetic neural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM)
    • Fernandez, M.; Caballero, J.; Fernandez, L. Genetic algorithm optimization in drug design QSAR: Bayesian-regularized genetic neural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM) Mol. Divers. 2011, 15, 269
    • (2011) Mol. Divers. , vol.15 , pp. 269
    • Fernandez, M.1    Caballero, J.2    Fernandez, L.3
  • 94
    • 77949696464 scopus 로고    scopus 로고
    • Clonal selection algorithms
    • Swinburne University of Technology: Melbourne, Australia.
    • Brownlee, J., Clonal selection algorithms. Technical Report 070209A; Swinburne University of Technology: Melbourne, Australia, 2007.
    • (2007) Technical Report 070209A
    • Brownlee, J.1
  • 95
    • 77954519525 scopus 로고    scopus 로고
    • Short term load forecasting using an artificial neural network trained by artificial immune system learning algorithm
    • Abdul Hamid, M. B.; Abdul Rahman, T. K. Short term load forecasting using an artificial neural network trained by artificial immune system learning algorithm 12th Intl. Conf. Comput. Modell. Simulat. (UKSim) 2010, 408-413
    • (2010) 12th Intl. Conf. Comput. Modell. Simulat. (UKSim) , pp. 408-413
    • Abdul Hamid, M.B.1    Abdul Rahman, T.K.2
  • 97
    • 33750366840 scopus 로고    scopus 로고
    • Real coded clonal selection algorithm for unconstrained global optimization using a hybrid inversely proportional hypermutation operator
    • Cutello, V.; Nicosia, G.; Pavone, M. Real coded clonal selection algorithm for unconstrained global optimization using a hybrid inversely proportional hypermutation operator Proc. 2006 ACM Symp. Appl. Comput. (SAC '06) 2011, 950-954
    • (2011) Proc. 2006 ACM Symp. Appl. Comput. (SAC '06) , pp. 950-954
    • Cutello, V.1    Nicosia, G.2    Pavone, M.3
  • 98
    • 84871678670 scopus 로고    scopus 로고
    • Modelling methodology based on Artificial Immune System algorithm and neural networks applied to removal of heavy metals from residual waters
    • Dragoi, E.; Suditu, G. D.; Curteanu, S. Modelling methodology based on Artificial Immune System algorithm and neural networks applied to removal of heavy metals from residual waters Environ. Eng. Manage. J. 2012, 11 (11) 1907
    • (2012) Environ. Eng. Manage. J. , vol.11 , Issue.11 , pp. 1907
    • Dragoi, E.1    Suditu, G.D.2    Curteanu, S.3
  • 99
    • 0016518731 scopus 로고
    • The construction and implementation of metamodels
    • Blanning, R. W. The construction and implementation of metamodels Simulation 1975, 24 (6) 177
    • (1975) Simulation , vol.24 , Issue.6 , pp. 177
    • Blanning, R.W.1
  • 100
    • 0003000735 scopus 로고
    • Faster-learning variations on back-propagation: An empirical study
    • Morgan Kaufmann: Los Altos, CA.
    • Fahlman, S. E. Faster-learning variations on back-propagation: An empirical study. Proceedings of the 1988 Connectionist Models Summer School; Morgan Kaufmann: Los Altos, CA, 1988.
    • (1988) Proceedings of the 1988 Connectionist Models Summer School
    • Fahlman, S.E.1
  • 103
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • Touretzky, D. S. Morgan-Kaufmann: Los Altos, CA
    • Fahlman, S.; Lebière, C. The cascade-correlation learning architecture. In Neural Information Systems 2; Touretzky, D. S., Ed.; Morgan-Kaufmann: Los Altos, CA, 1990; pp 524-532.
    • (1990) Neural Information Systems 2 , pp. 524-532
    • Fahlman, S.1    Lebière, C.2
  • 107
    • 0007406645 scopus 로고
    • Diseno de redes neuronales artificiales mediante algoritmos genéticos
    • Universidad de Santiago de Compostela: Galicia, Spain
    • Marin, F. J.; Sandoval, F. Diseno de redes neuronales artificiales mediante algoritmos genéticos. Computacion Neuronal;, Universidad de Santiago de Compostela: Galicia, Spain, 1995; p 385.
    • (1995) Computacion Neuronal , pp. 385
    • Marin, F.J.1    Sandoval, F.2
  • 110
    • 0007444029 scopus 로고
    • Evolution and learning in neural networks: The number and distribution of learning trials affect the rate of evolution
    • Keesing, R.; Stork, D. G. Evolution and learning in neural networks: the number and distribution of learning trials affect the rate of evolution Adv. Neural Inform. Process. Syst. 1991, 3, 805
    • (1991) Adv. Neural Inform. Process. Syst. , vol.3 , pp. 805
    • Keesing, R.1    Stork, D.G.2
  • 111
    • 23844513726 scopus 로고    scopus 로고
    • Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach
    • Vlahogianni, E. I.; Karlaftis, M. G.; Golias, J. C. Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach Transport. Res. C-Emer. 2005, 13 (3) 211
    • (2005) Transport. Res. C-Emer. , vol.13 , Issue.3 , pp. 211
    • Vlahogianni, E.I.1    Karlaftis, M.G.2    Golias, J.C.3
  • 112
    • 2942622491 scopus 로고    scopus 로고
    • Robust design of multilayer feedforward neural networks: An experimental approach
    • Kim, Y. S.; Yum, B. J. Robust design of multilayer feedforward neural networks: An experimental approach Eng. Appl. Artif. Intell. 2004, 17 (3) 249
    • (2004) Eng. Appl. Artif. Intell. , vol.17 , Issue.3 , pp. 249
    • Kim, Y.S.1    Yum, B.J.2
  • 113
    • 0034313880 scopus 로고    scopus 로고
    • Optimizing the parameters of multilayered feedforward neural networks through Taguchi design of experiments
    • Packianather, M. S.; Drake, P. R.; Rowlands, H. Optimizing the parameters of multilayered feedforward neural networks through Taguchi design of experiments Qual. Reliab. Eng. Int. 2000, 16, 461
    • (2000) Qual. Reliab. Eng. Int. , vol.16 , pp. 461
    • Packianather, M.S.1    Drake, P.R.2    Rowlands, H.3
  • 114
    • 33344467271 scopus 로고    scopus 로고
    • Design of neural networks using genetic algorithm for on-line property estimation of crude fractionator products
    • Dam, M.; Saraf, D. N. Design of neural networks using genetic algorithm for on-line property estimation of crude fractionator products Comput. Chem. Eng. 2006, 30, 722
    • (2006) Comput. Chem. Eng. , vol.30 , pp. 722
    • Dam, M.1    Saraf, D.N.2
  • 115
    • 27744515720 scopus 로고    scopus 로고
    • The optimization of neural network parameters using Taguchi's design of experiments approach: An application in manufacturing process modeling
    • Sukthomya, W.; Tannock, J. The optimization of neural network parameters using Taguchi's design of experiments approach: an application in manufacturing process modeling Neural Comput. Appl. 2005, 14, 337
    • (2005) Neural Comput. Appl. , vol.14 , pp. 337
    • Sukthomya, W.1    Tannock, J.2
  • 116
    • 0034634798 scopus 로고    scopus 로고
    • Process cost modeling using neural networks
    • Wang, Q.; Stockton, D. J.; Baguley, P. Process cost modeling using neural networks Int. J. Prod. Res. 2000, 38 (16) 3811
    • (2000) Int. J. Prod. Res. , vol.38 , Issue.16 , pp. 3811
    • Wang, Q.1    Stockton, D.J.2    Baguley, P.3
  • 117
    • 26844563713 scopus 로고    scopus 로고
    • New Training Method and Optimal Structure of Backpropagation Networks
    • Springer: Berlin/Heidelberg.
    • Sureerattanan, S.; Sureerattanan, N. New Training Method and Optimal Structure of Backpropagation Networks. Advances in Natural Computation; Springer: Berlin/Heidelberg, 2005.
    • (2005) Advances in Natural Computation
    • Sureerattanan, S.1    Sureerattanan, N.2
  • 118
    • 84862483476 scopus 로고    scopus 로고
    • Evolving weights and transfer functions in feed forward neural networks
    • European Network on Intelligent Technologies for Smart Adaptive Systems: Oulu, Finland, July 10-12, 2003.
    • Annunziato, M.; Bertini, I.; Lucchetti, M.; Pizzuti, S. Evolving weights and transfer functions in feed forward neural networks. Proc. EUNITE 2003. European Network on Intelligent Technologies for Smart Adaptive Systems: Oulu, Finland, July 10-12, 2003.
    • (2003) Proc. EUNITE
    • Annunziato, M.1    Bertini, I.2    Lucchetti, M.3    Pizzuti, S.4
  • 119
    • 79956079825 scopus 로고    scopus 로고
    • Reactive power dispatch with hybrid formulation: Particle swarm optimization and improved Genetic Algorithms with real coding
    • Laouafi, F.; Boukadoum, A.; Leulmi, S. Reactive power dispatch with hybrid formulation: Particle swarm optimization and improved Genetic Algorithms with real coding Int. Rev. Elec. Eng. IREE 2010, 5, 601
    • (2010) Int. Rev. Elec. Eng. IREE , vol.5 , pp. 601
    • Laouafi, F.1    Boukadoum, A.2    Leulmi, S.3
  • 120
    • 55349116293 scopus 로고    scopus 로고
    • Neuroevolution: From architectures to learning
    • Floreano, D.; Durr, P.; Mattiussi, C. Neuroevolution: From architectures to learning Evol. Intell. 2008, 1, 47
    • (2008) Evol. Intell. , vol.1 , pp. 47
    • Floreano, D.1    Durr, P.2    Mattiussi, C.3
  • 122
    • 27844457999 scopus 로고    scopus 로고
    • Genetic/quadratic search algorithm for plant economic optimizations using a process simulator
    • Jang, W. H.; Hahn, J.; Hall, R. K. Genetic/quadratic search algorithm for plant economic optimizations using a process simulator Comput. Chem. Eng. 2005, 30, 285
    • (2005) Comput. Chem. Eng. , vol.30 , pp. 285
    • Jang, W.H.1    Hahn, J.2    Hall, R.K.3
  • 123
    • 0005939955 scopus 로고    scopus 로고
    • Structure Design of Neural Networks Using Genetic Algorithms
    • Mizuta, S.; Sato, T.; Lao, D.; Ikeda, M.; Shimizu, T. Structure Design of Neural Networks Using Genetic Algorithms Complex Syst. 2001, 13, 161
    • (2001) Complex Syst. , vol.13 , pp. 161
    • Mizuta, S.1    Sato, T.2    Lao, D.3    Ikeda, M.4    Shimizu, T.5
  • 125
    • 0025477595 scopus 로고
    • Genetic algorithm and neural networks: Optimizing connections and connectivity
    • Whitely, D.; Starkweather, T.; Bogart, C. Genetic algorithm and neural networks: Optimizing connections and connectivity Parallel Comput. 1990, 14, 347
    • (1990) Parallel Comput. , vol.14 , pp. 347
    • Whitely, D.1    Starkweather, T.2    Bogart, C.3
  • 126
    • 84858335611 scopus 로고    scopus 로고
    • A hybrid algorithm to optimize RBF network architecture and parameters for nonlinear time series prediction
    • Gan, M.; Peng, H.; Dong, X. P. A hybrid algorithm to optimize RBF network architecture and parameters for nonlinear time series prediction Appl. Math. Model 2012, 36, 2911
    • (2012) Appl. Math. Model , vol.36 , pp. 2911
    • Gan, M.1    Peng, H.2    Dong, X.P.3
  • 127
    • 0001961776 scopus 로고
    • Dynamic parameter encoding for genetic algorithms
    • Schraudolph, N. N.; Belew, R. K. Dynamic parameter encoding for genetic algorithms Mach. Learn. 1992, 9 (1) 9
    • (1992) Mach. Learn. , vol.9 , Issue.1 , pp. 9
    • Schraudolph, N.N.1    Belew, R.K.2
  • 128
    • 0001008973 scopus 로고
    • Neurogenetic learning: An integrated method of designing and training neural networks using genetic algorithm
    • Kitano, H. Neurogenetic learning: An integrated method of designing and training neural networks using genetic algorithm Phys. D. 1994, 75, 225
    • (1994) Phys. D. , vol.75 , pp. 225
    • Kitano, H.1
  • 129
    • 70450068893 scopus 로고    scopus 로고
    • MENNAG: A modular, regular and hierarchical encoding for neural-networks based on attribute grammars
    • Mouret, J. B.; Doncieux, S. P. MENNAG: a modular, regular and hierarchical encoding for neural-networks based on attribute grammars Evol. Intell. 2008, 1, 187
    • (2008) Evol. Intell. , vol.1 , pp. 187
    • Mouret, J.B.1    Doncieux, S.P.2
  • 131
    • 0001439044 scopus 로고
    • Using genetic search to exploit the emergent behavior of neural networks
    • Schaffer, J. D.; Caruna, R. A.; Eshelman, L. J. Using genetic search to exploit the emergent behavior of neural networks Phys. D. 1990, 42, 244
    • (1990) Phys. D. , vol.42 , pp. 244
    • Schaffer, J.D.1    Caruna, R.A.2    Eshelman, L.J.3
  • 132
    • 0002933170 scopus 로고
    • Designing neural networks using genetic algorithms with graph generation system
    • Kitano, H. Designing neural networks using genetic algorithms with graph generation system Complex Syst. 1990, 4, 461
    • (1990) Complex Syst. , vol.4 , pp. 461
    • Kitano, H.1
  • 133
    • 84980029963 scopus 로고
    • GANNet: A genetic algorithm for optimizing topology and weights in neural network design
    • White, D.; Ligomenides, P. GANNet: A genetic algorithm for optimizing topology and weights in neural network design Lect. Notes Comput. Sci. 1993, 686, 322-327
    • (1993) Lect. Notes Comput. Sci. , vol.686 , pp. 322-327
    • White, D.1    Ligomenides, P.2
  • 134
    • 84862726216 scopus 로고    scopus 로고
    • A Review of Major Application Areas of Differential Evolution
    • Chakraborty, U. Springer: Berlin.
    • Plagianakos, V.; Tasoulis, D.; Vrahatis, M. A Review of Major Application Areas of Differential Evolution, In Advances in Differential Evolution; Chakraborty, U. Ed.; Springer: Berlin, 2008.
    • (2008) Advances in Differential Evolution
    • Plagianakos, V.1    Tasoulis, D.2    Vrahatis, M.3
  • 135
    • 0035881514 scopus 로고    scopus 로고
    • Automatic design of neural network structures
    • Boozarjomehr, R. B.; Svrcek, W. Y. Automatic design of neural network structures Comput. Chem. Eng. 2001, 25, 1075
    • (2001) Comput. Chem. Eng. , vol.25 , pp. 1075
    • Boozarjomehr, R.B.1    Svrcek, W.Y.2
  • 136
    • 84980027665 scopus 로고
    • Optimization of a competitive learning neural network by genetic algorithms
    • Merelo, J. J.; Paton, M.; Canas, A.; Prieto, A.; Moran, F. Optimization of a competitive learning neural network by genetic algorithms Lect. Notes Comput. Sci. 1993, 686, 185-192
    • (1993) Lect. Notes Comput. Sci. , vol.686 , pp. 185-192
    • Merelo, J.J.1    Paton, M.2    Canas, A.3    Prieto, A.4    Moran, F.5
  • 138
    • 0028518652 scopus 로고
    • Accelerating the standard backpropagation method using a genetic approach
    • Kinnebrock, W. Accelerating the standard backpropagation method using a genetic approach Neurocomputing 1994, 6, 583
    • (1994) Neurocomputing , vol.6 , pp. 583
    • Kinnebrock, W.1
  • 139
    • 0002702865 scopus 로고    scopus 로고
    • Towards designing artificial neural networks by evolution
    • Yao, X.; Liu, Y. Towards designing artificial neural networks by evolution Appl. Math. Comput. 1998, 91 (1) 83
    • (1998) Appl. Math. Comput. , vol.91 , Issue.1 , pp. 83
    • Yao, X.1    Liu, Y.2
  • 140
    • 34249714893 scopus 로고    scopus 로고
    • Time series prediction with recurrent neural networks trained by a hybrid PSO-EA algorithm
    • Cai, X.; Zhang, N.; Venayagamoorthy, G. K.; Wunschil, D. C. Time series prediction with recurrent neural networks trained by a hybrid PSO-EA algorithm Neurocomputing 2007, 70 (13-15) 2342
    • (2007) Neurocomputing , vol.70 , Issue.1315 , pp. 2342
    • Cai, X.1    Zhang, N.2    Venayagamoorthy, G.K.3    Wunschil, D.C.4
  • 141
    • 30344473315 scopus 로고    scopus 로고
    • Genetic algorithm optimized neural networks ensemble for estimation of mefenamic acid and paracetamol in tablets
    • Dondeti, S.; Kannan, K.; Manavalan, R. Genetic algorithm optimized neural networks ensemble for estimation of mefenamic acid and paracetamol in tablets Acta Chim. Slov. 2005, 52, 440
    • (2005) Acta Chim. Slov. , vol.52 , pp. 440
    • Dondeti, S.1    Kannan, K.2    Manavalan, R.3
  • 142
    • 0031281425 scopus 로고    scopus 로고
    • Coupling weight elimination with genetic algorithms to reduce network size and preserve generalization
    • Bebis, G.; Georgiopoulos, M.; Kasparis, T. Coupling weight elimination with genetic algorithms to reduce network size and preserve generalization Neurocomputing 1997, 17, 167
    • (1997) Neurocomputing , vol.17 , pp. 167
    • Bebis, G.1    Georgiopoulos, M.2    Kasparis, T.3
  • 143
    • 77249143882 scopus 로고    scopus 로고
    • Modeling of commercial ethylene oxide reactor: A hybrid approach by artificial neural network & differential evolution
    • Lahiri, S.K.; Khalfe, N. Modeling of commercial ethylene oxide reactor: A hybrid approach by artificial neural network & differential evolution Int. J. Chem. React. Eng. 2010, 8, Article A4
    • (2010) Int. J. Chem. React. Eng. , vol.8 , pp. 4
    • Lahiri, S.K.1    Khalfe, N.2
  • 145
  • 146
    • 0035863544 scopus 로고    scopus 로고
    • Using genetic algorithms to select architecture of a feedforward artificial neural network
    • Arifovic, J.; Gencay, R. Using genetic algorithms to select architecture of a feedforward artificial neural network Phys. A. 2001, 289, 574
    • (2001) Phys. A. , vol.289 , pp. 574
    • Arifovic, J.1    Gencay, R.2
  • 148
    • 31744436874 scopus 로고    scopus 로고
    • A saw-tooth genetic algorithm combing the effects of variable population size and reinitialization to enhance performance
    • Koumousis, V. K.; Katsaras, C. P. A saw-tooth genetic algorithm combing the effects of variable population size and reinitialization to enhance performance IEEE Trans. Evolut. Comput. 2006, 10, 19
    • (2006) IEEE Trans. Evolut. Comput. , vol.10 , pp. 19
    • Koumousis, V.K.1    Katsaras, C.P.2
  • 149
    • 0032660405 scopus 로고    scopus 로고
    • Optimisation of control parameters in genetic algorithms: A stochastic approach
    • Cao, Y. J.; Wu, Q. H. Optimisation of control parameters in genetic algorithms: A stochastic approach Int. J. Syst. Sci. 1999, 30, 551
    • (1999) Int. J. Syst. Sci. , vol.30 , pp. 551
    • Cao, Y.J.1    Wu, Q.H.2
  • 150
    • 9544248687 scopus 로고    scopus 로고
    • A hybrid genetic algorithm for efficient parameter estimation of large kinetic models
    • Katare, S.; Bhan, A.; Caruthers, J.; Delgass, W. N. A hybrid genetic algorithm for efficient parameter estimation of large kinetic models Comput. Chem. Eng. 2004, 28, 2569
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 2569
    • Katare, S.1    Bhan, A.2    Caruthers, J.3    Delgass, W.N.4
  • 151
    • 33846620216 scopus 로고    scopus 로고
    • Optimal reservoir operation considering the water quality issues: A stochastic conflict resolution approach
    • Kerachian, R.; Karamouz, M. Optimal reservoir operation considering the water quality issues: A stochastic conflict resolution approach Water Resour. Res. 2006, 42 (12) 1
    • (2006) Water Resour. Res. , vol.42 , Issue.12 , pp. 1
    • Kerachian, R.1    Karamouz, M.2
  • 152
    • 69249219236 scopus 로고    scopus 로고
    • Reservoir operation optimization using adaptive varying chromosome length genetic algorithm
    • Zahraie, B.; Kerachian, R.; Malekmohammadi, B. Reservoir operation optimization using adaptive varying chromosome length genetic algorithm Water Int. 2008, IWRA 33(3), 380
    • (2008) Water Int. , vol.333 , pp. 380
    • Zahraie, B.1    Kerachian, R.2    Malekmohammadi, B.3
  • 154
    • 79551522523 scopus 로고    scopus 로고
    • Constrained Real-Parameter Optimization with e-Self-Adaptive Differential Evolution
    • Mezura-Montes, E. Springer: Berlin.
    • Brest, J. Constrained Real-Parameter Optimization with e-Self-Adaptive Differential Evolution. In Constraint-Handling in Evolutionary Optimization; Mezura-Montes, E., Ed.; Springer: Berlin, 2009.
    • (2009) Constraint-Handling in Evolutionary Optimization
    • Brest, J.1
  • 155
    • 0029720681 scopus 로고    scopus 로고
    • On the usage of differential evolution for function optimization
    • Smoth, M. H. Lee, M. A. Keller, J. Yen, J. IEEE: Berkeley, CA.
    • Storn, R. On the usage of differential evolution for function optimization. In Biennial Conference of the North American Fuzzy Information Processing Society-NAFIPS; Smoth, M. H.; Lee, M. A.; Keller, J.; Yen, J., Eds.; IEEE: Berkeley, CA, 1996.
    • (1996) Biennial Conference of the North American Fuzzy Information Processing Society - NAFIPS
    • Storn, R.1
  • 157
    • 71049171706 scopus 로고    scopus 로고
    • An algorithm for determining neural network architecture using differential evolution
    • Wabg, S. Yu, L. Wen, F. He, S. Fang, Y. Lai, K. K. IEE Computer Society: Washington, DC
    • Bhuiyan, M. Z. A.; An algorithm for determining neural network architecture using differential evolution. In Business Intelligence and Financial Engineering. International Conference on (BIFE 2009); Wabg, S.; Yu, L.; Wen, F.; He, S.; Fang, Y.; Lai, K. K., Eds.; IEE Computer Society: Washington, DC, 2009; p 3.
    • (2009) Business Intelligence and Financial Engineering. International Conference on (BIFE 2009) , pp. 3
    • Bhuiyan, M.Z.A.1
  • 158
    • 0000599395 scopus 로고
    • Multiple objective optimization with vector evaluated genetic algorithms
    • Schaffer, J. D. Multiple objective optimization with vector evaluated genetic algorithms Proc. 1st Intl. Conf. Genet. Algorithms 1985, 93
    • (1985) Proc. 1st Intl. Conf. Genet. Algorithms , pp. 93
    • Schaffer, J.D.1
  • 159
    • 0001953837 scopus 로고
    • Genetic algorithms for multiobjective optimization: Formulation, discussion, and generalization
    • Fonseca, C. M.; Fleming, P. J. Genetic algorithms for multiobjective optimization: Formulation, discussion, and generalization Proc. 5th Intl. Conf. Genet. Algorithms 1993, 416
    • (1993) Proc. 5th Intl. Conf. Genet. Algorithms , pp. 416
    • Fonseca, C.M.1    Fleming, P.J.2
  • 161
    • 84878545782 scopus 로고    scopus 로고
    • Multi objective optimization using evolutionary algorithms - A comparative case study
    • Zitzler, E.; Thiele, L. Multi objective optimization using evolutionary algorithms-A comparative case study Lect. Notes Comput. Sci. 1998, 1498, 292-301
    • (1998) Lect. Notes Comput. Sci. , vol.1498 , pp. 292-301
    • Zitzler, E.1    Thiele, L.2
  • 162
    • 0000852513 scopus 로고
    • Multi-objective function optimization using non-dominated sorting genetic algorithms
    • Srinivas, N.; Deb, K. Multi-objective function optimization using non-dominated sorting genetic algorithms Evol. Comput. 1994, 2 (3) 221
    • (1994) Evol. Comput. , vol.2 , Issue.3 , pp. 221
    • Srinivas, N.1    Deb, K.2
  • 164
    • 3142710882 scopus 로고    scopus 로고
    • Identifying the structure of nonlinear dynamic systems using multi-objective genetic programming
    • Rodriguez-Vasquez, K.; Fonseca, C. M.; Fleming, P. J. Identifying the structure of nonlinear dynamic systems using multi-objective genetic programming IEEE Trans. Syst. Man Cy. A. 2004, 34, 531
    • (2004) IEEE Trans. Syst. Man Cy. A. , vol.34 , pp. 531
    • Rodriguez-Vasquez, K.1    Fonseca, C.M.2    Fleming, P.J.3
  • 166
    • 0043268702 scopus 로고    scopus 로고
    • A Trigonometric Mutation Operation to Differential Evolution
    • Fan, H. Y.; Lampinen, J. A Trigonometric Mutation Operation to Differential Evolution J. Global Opt. 2003, 27, 105
    • (2003) J. Global Opt. , vol.27 , pp. 105
    • Fan, H.Y.1    Lampinen, J.2
  • 167
    • 0037884730 scopus 로고    scopus 로고
    • A directed mutation operation for the differential evolution algorithm
    • Fan, H. Y.; Lampinen, J. A directed mutation operation for the differential evolution algorithm Int. J. Ind. Eng.-Appl. P. 2003, 1, 6
    • (2003) Int. J. Ind. Eng.-Appl. P. , vol.1 , pp. 6
    • Fan, H.Y.1    Lampinen, J.2
  • 168
    • 37249051874 scopus 로고    scopus 로고
    • Active target particle swarm optimization: Research Articles
    • Zhang, Y. N.; Hu, Q. N.; Teng, H. F. Active target particle swarm optimization: Research Articles J. Concurr. Comput.-Pract. E. 2008, 20 (1) 29
    • (2008) J. Concurr. Comput.-Pract. E. , vol.20 , Issue.1 , pp. 29
    • Zhang, Y.N.1    Hu, Q.N.2    Teng, H.F.3
  • 169
    • 57849109491 scopus 로고    scopus 로고
    • Particle swarm optimization using adaptive mutation
    • Pant, M.; Thangaraj, R.; Abraham, A. Particle swarm optimization using adaptive mutation IEEE/DEXA'08 2008, 519
    • (2008) IEEE/DEXA'08 , pp. 519
    • Pant, M.1    Thangaraj, R.2    Abraham, A.3
  • 170
    • 38549155486 scopus 로고    scopus 로고
    • Adaptive particle swarm optimization guided by acceleration information
    • Zeng, J.; Hu, J.; Jie, J. Adaptive particle swarm optimization guided by acceleration information Proc. IEEE/ ICCIAS. 2006, 1, 351
    • (2006) Proc. IEEE/ ICCIAS. , vol.1 , pp. 351
    • Zeng, J.1    Hu, J.2    Jie, J.3
  • 171
    • 27144547172 scopus 로고    scopus 로고
    • Combining particle swarm optimization with angle modulation to solve binary problems
    • Pampara, G.; Franken, N.; Engelbrecht, A. P. Combining particle swarm optimization with angle modulation to solve binary problems IEEE Congress Evol. Comput. 2005, 1, 89
    • (2005) IEEE Congress Evol. Comput. , vol.1 , pp. 89
    • Pampara, G.1    Franken, N.2    Engelbrecht, A.P.3
  • 172
  • 173
    • 84859719176 scopus 로고    scopus 로고
    • Cooperatively Coevolving Particle Swarms for Large Scale Optimization
    • Yao, X. Cooperatively Coevolving Particle Swarms for Large Scale Optimization; Conf. of EPSRC IEEE Trans. Evol. Comput. 2012, 16, 210-224
    • (2012) IEEE Trans. Evol. Comput. , vol.16 , pp. 210-224
    • Yao, X.1
  • 175
    • 79955960115 scopus 로고    scopus 로고
    • Particle Swarm Optimization Methods. Taxonomy and Applications
    • Sedighizadeh, D.; Masehian, E. Particle Swarm Optimization Methods. Taxonomy and Applications Int. J. Comput. Theory Eng. 2009, 1 (5) 1793
    • (2009) Int. J. Comput. Theory Eng. , vol.1 , Issue.5 , pp. 1793
    • Sedighizadeh, D.1    Masehian, E.2
  • 176
    • 38649118854 scopus 로고    scopus 로고
    • Letters: Evolving artificial neural networks using an improved PSO and DPSO
    • Yu, J.; Wang, S.; Xi, L. Letters: evolving artificial neural networks using an improved PSO and DPSO Neurocomputing 2008, 71 (4-6) 1054
    • (2008) Neurocomputing , vol.71 , Issue.46 , pp. 1054
    • Yu, J.1    Wang, S.2    Xi, L.3
  • 178
    • 22144461351 scopus 로고    scopus 로고
    • A new transition rule for ant colony optimisation algorithms: Application to pipe network optimisation problems
    • Afshar, M. H. A new transition rule for ant colony optimisation algorithms: application to pipe network optimisation problems Eng. Optimiz. 2005, 37 (5) 525
    • (2005) Eng. Optimiz. , vol.37 , Issue.5 , pp. 525
    • Afshar, M.H.1
  • 179
    • 33746442048 scopus 로고    scopus 로고
    • Improving the efficiency of ant algorithms using adaptive refinement: Application to storm water network design
    • Afshar, M. H. Improving the efficiency of ant algorithms using adaptive refinement: application to storm water network design Adv. Water Res. 2006, 29, 1371
    • (2006) Adv. Water Res. , vol.29 , pp. 1371
    • Afshar, M.H.1
  • 180
    • 70449533674 scopus 로고    scopus 로고
    • A parameter free Continuous Ant Colony Optimization Algorithm for the optimal design of storm sewer networks: Constrained and unconstrained approach
    • Afshar, M. H. A parameter free Continuous Ant Colony Optimization Algorithm for the optimal design of storm sewer networks: Constrained and unconstrained approach Adv. Eng. Soft. 2010, 41 (2) 188
    • (2010) Adv. Eng. Soft. , vol.41 , Issue.2 , pp. 188
    • Afshar, M.H.1
  • 181
    • 67651121862 scopus 로고    scopus 로고
    • Neural networks training by artificial bee colony algorithm pattern classification
    • Karaboga, D.; Ozturk, C. Neural networks training by artificial bee colony algorithm pattern classification Neural Network World 2009, 19, 279
    • (2009) Neural Network World , vol.19 , pp. 279
    • Karaboga, D.1    Ozturk, C.2
  • 182
    • 77955735374 scopus 로고    scopus 로고
    • A quick group search optimizer and its application to the optimal design of double layer grid shells
    • Guand, Q.; Feng, L.; Lijuan, L. A quick group search optimizer and its application to the optimal design of double layer grid shells AIP Conf. Proc. 2009, 1233, 718-723
    • (2009) AIP Conf. Proc. , vol.1233 , pp. 718-723
    • Guand, Q.1    Feng, L.2    Lijuan, L.3
  • 183
    • 60949089864 scopus 로고    scopus 로고
    • An improved group search optimizer for mechanical design optimization problems
    • Shen, H.; Zhu, Y.; Niu, B.; Wu, Q. H. An improved group search optimizer for mechanical design optimization problems Prog. Nat. Sci. 2009, 19, 91
    • (2009) Prog. Nat. Sci. , vol.19 , pp. 91
    • Shen, H.1    Zhu, Y.2    Niu, B.3    Wu, Q.H.4
  • 185
    • 82655162101 scopus 로고    scopus 로고
    • Group search optimizer based optimal location and capacity of distributed generations
    • Kang, Q.; Lan, T.; Yan, Y.; Wang, L.; Wu, Q. Group search optimizer based
    • (2012) Neurocomputing , vol.78 , Issue.1 , pp. 55
    • Kang, Q.1    Lan, T.2    Yan, Y.3    Wang, L.4    Wu, Q.5
  • 186
    • 84655169227 scopus 로고    scopus 로고
    • An improved group search optimizer with operation of quantum-behaved swarm and its application
    • Chen, D.; Wang, J.; Zou, F.; Hou, W.; Zhao, C. An improved group search optimizer with operation of quantum-behaved swarm and its application Appl. Soft Comput. 2012, 12, 712
    • (2012) Appl. Soft Comput. , vol.12 , pp. 712
    • Chen, D.1    Wang, J.2    Zou, F.3    Hou, W.4    Zhao, C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.