메뉴 건너뛰기




Volumn 229, Issue , 2013, Pages 54-68

Fuzzy rough set model for set-valued data

Author keywords

Attribute reduction; Discernibility function; Discernibility matrix; Fuzzy rough set model; Set valued data

Indexed keywords

ATTRIBUTE REDUCTION; DISCERNIBILITY FUNCTION; DISCERNIBILITY MATRIX; FUZZY-ROUGH SETS; SET-VALUED DATUM;

EID: 84881476765     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2013.03.005     Document Type: Article
Times cited : (76)

References (36)
  • 1
    • 84856730264 scopus 로고    scopus 로고
    • Geometrical interpretation and applications of membership functions with fuzzy rough sets
    • D.G. Chen, S. Kwong, Q. He, and H. Wang Geometrical interpretation and applications of membership functions with fuzzy rough sets Fuzzy Sets Syst. 193 2012 122 135
    • (2012) Fuzzy Sets Syst. , vol.193 , pp. 122-135
    • Chen, D.G.1    Kwong, S.2    He, Q.3    Wang, H.4
  • 2
    • 80052681344 scopus 로고    scopus 로고
    • Rough sets, coverings and incomplete information
    • I. Couso, and D. Dubois Rough sets, coverings and incomplete information Fund. Inf. 108 2011 223 247
    • (2011) Fund. Inf. , vol.108 , pp. 223-247
    • Couso, I.1    Dubois, D.2
  • 3
    • 84855980191 scopus 로고    scopus 로고
    • Uncertainty measurement for interval-valued decision systems based on extended conditional entropy
    • J. Dai, W. Wang, Q. Xu, and H. Tian Uncertainty measurement for interval-valued decision systems based on extended conditional entropy Knowl. Based Syst. 27 2012 443 450
    • (2012) Knowl. Based Syst. , vol.27 , pp. 443-450
    • Dai, J.1    Wang, W.2    Xu, Q.3    Tian, H.4
  • 4
    • 84859593302 scopus 로고    scopus 로고
    • Approximations and uncertainty measures in incomplete information systems
    • J. Dai, and Q. Xu Approximations and uncertainty measures in incomplete information systems Inf. Sci. 198 2012 62 80
    • (2012) Inf. Sci. , vol.198 , pp. 62-80
    • Dai, J.1    Xu, Q.2
  • 5
    • 84869381912 scopus 로고    scopus 로고
    • Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification
    • J. Dai, and Q. Xu Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification Appl. Soft Comput. 13 2013 211 221
    • (2013) Appl. Soft Comput. , vol.13 , pp. 211-221
    • Dai, J.1    Xu, Q.2
  • 6
    • 79956225412 scopus 로고    scopus 로고
    • A comparative study on strategies of rule induction for incomplete data based on rough set approach
    • J. Dai, Q. Xu, and W. Wang A comparative study on strategies of rule induction for incomplete data based on rough set approach Int. J. Advancements Comput. Technol. 3 2011 176 183
    • (2011) Int. J. Advancements Comput. Technol. , vol.3 , pp. 176-183
    • Dai, J.1    Xu, Q.2    Wang, W.3
  • 7
    • 84864063529 scopus 로고    scopus 로고
    • Conditional entropy for incomplete decision systems and its application in data mining
    • J. Dai, Q. Xu, W. Wang, and H. Tian Conditional entropy for incomplete decision systems and its application in data mining Int. J. Gen. Syst. 41 2012 713 728
    • (2012) Int. J. Gen. Syst. , vol.41 , pp. 713-728
    • Dai, J.1    Xu, Q.2    Wang, W.3    Tian, H.4
  • 8
    • 84963133436 scopus 로고
    • Rough fuzzy sets and fuzzy rough sets
    • D. Dubois, and H. Prade Rough fuzzy sets and fuzzy rough sets Int. J. Gen. Syst. 17 1990 191 209
    • (1990) Int. J. Gen. Syst. , vol.17 , pp. 191-209
    • Dubois, D.1    Prade, H.2
  • 10
    • 84856101730 scopus 로고    scopus 로고
    • Gradualness, uncertainty and bipolarity making sense of fuzzy sets
    • D. Dubois, and H. Prade Gradualness, uncertainty and bipolarity making sense of fuzzy sets Fuzzy Sets Syst. 192 2012 3 24
    • (2012) Fuzzy Sets Syst. , vol.192 , pp. 3-24
    • Dubois, D.1    Prade, H.2
  • 12
    • 80051947439 scopus 로고
    • On the unknown attribute values in learning from examples
    • J.W. Grzymala-Busse, On the unknown attribute values in learning from examples, in: Lecture Notes in Computer Science, vol. 542, 1991, pp. 368-377.
    • (1991) Lecture Notes in Computer Science , vol.542 , pp. 368-377
    • Grzymala-Busse, J.W.1
  • 13
    • 33645411671 scopus 로고    scopus 로고
    • Data with missing attribute values generalization of indiscernibility relation and rule induction
    • J.W. Grzymala-Busse Data with missing attribute values generalization of indiscernibility relation and rule induction Trans. Rough Sets 1 2004 78 95
    • (2004) Trans. Rough Sets , vol.1 , pp. 78-95
    • Grzymala-Busse, J.W.1
  • 14
    • 33745222534 scopus 로고    scopus 로고
    • Set-valued information systems
    • Y.Y. Guan, and H. Wang Set-valued information systems Inf. Sci. 176 2006 2507 2525
    • (2006) Inf. Sci. , vol.176 , pp. 2507-2525
    • Guan, Y.Y.1    Wang, H.2
  • 15
    • 0348170835 scopus 로고    scopus 로고
    • Fuzzy-rough attribute reduction with application to web categorization
    • R. Jensen, and Q. Shen Fuzzy-rough attribute reduction with application to web categorization Fuzzy Sets Syst. 141 2004 469 485
    • (2004) Fuzzy Sets Syst. , vol.141 , pp. 469-485
    • Jensen, R.1    Shen, Q.2
  • 17
    • 0032294902 scopus 로고    scopus 로고
    • Rough set approach to incomplete information systems
    • M. Kryszkiewicz Rough set approach to incomplete information systems Inf. Sci. 112 1998 39 49
    • (1998) Inf. Sci. , vol.112 , pp. 39-49
    • Kryszkiewicz, M.1
  • 18
    • 0033079944 scopus 로고    scopus 로고
    • Rules in incomplete information systems
    • M. Kryszkiewicz Rules in incomplete information systems Inf. Sci. 113 1999 271 292
    • (1999) Inf. Sci. , vol.113 , pp. 271-292
    • Kryszkiewicz, M.1
  • 19
    • 0018518835 scopus 로고
    • On semantic issues connected with incomplete information databases
    • W.J. Lipski On semantic issues connected with incomplete information databases ACM Trans. Database Syst. 4 1979 269 296
    • (1979) ACM Trans. Database Syst. , vol.4 , pp. 269-296
    • Lipski, W.J.1
  • 20
    • 84976669069 scopus 로고
    • On databases with incomplete information
    • W.J. Lipski On databases with incomplete information J. ACM 28 1981 41 70
    • (1981) J. ACM , vol.28 , pp. 41-70
    • Lipski, W.J.1
  • 21
    • 79551682104 scopus 로고    scopus 로고
    • Fuzzy-rough supervised attribute clustering algorithm and classification of microarray data
    • P. Maji Fuzzy-rough supervised attribute clustering algorithm and classification of microarray data IEEE Trans. Syst. Man Cybern. Part B Cybern. 41 2011 222 233
    • (2011) IEEE Trans. Syst. Man Cybern. Part B Cybern. , vol.41 , pp. 222-233
    • Maji, P.1
  • 24
    • 37249021698 scopus 로고
    • Representation of non-deterministic information
    • E. Orlowska, and Z. Pawlak Representation of non-deterministic information Theor. Comput. Sci. 29 1984 27 39
    • (1984) Theor. Comput. Sci. , vol.29 , pp. 27-39
    • Orlowska, E.1    Pawlak, Z.2
  • 25
    • 84881480417 scopus 로고    scopus 로고
    • Computational Theory Perception (CTP), rough-fuzzy uncertainty analysis and mining in bioinformatics and web intelligence a unified framework
    • S.K. Pal Computational Theory Perception (CTP), rough-fuzzy uncertainty analysis and mining in bioinformatics and web intelligence a unified framework Trans. Rough Sets 11 2010 106 129
    • (2010) Trans. Rough Sets , vol.11 , pp. 106-129
    • Pal, S.K.1
  • 29
    • 33749680310 scopus 로고    scopus 로고
    • Rudiments of rough sets
    • Z. Pawlak, and A. Skowron Rudiments of rough sets Inf. Sci. 177 2007 3 27
    • (2007) Inf. Sci. , vol.177 , pp. 3-27
    • Pawlak, Z.1    Skowron, A.2
  • 30
    • 65849463644 scopus 로고    scopus 로고
    • Set-valued ordered information systems
    • Y.H. Qian, C. Dang, J.Y. Liang, and D. Tang Set-valued ordered information systems Inf. Sci. 179 2009 2809 2832
    • (2009) Inf. Sci. , vol.179 , pp. 2809-2832
    • Qian, Y.H.1    Dang, C.2    Liang, J.Y.3    Tang, D.4
  • 31
    • 2442528339 scopus 로고    scopus 로고
    • Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring
    • Q. Shen, and R. Jensen Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring Pattern Recognition 37 2004 1351 1363
    • (2004) Pattern Recognition , vol.37 , pp. 1351-1363
    • Shen, Q.1    Jensen, R.2
  • 32
    • 0029307418 scopus 로고
    • Extracting laws from decision tables a rough set approach
    • A. Skowron Extracting laws from decision tables a rough set approach Comput. Intell. 11 1995 371 388
    • (1995) Comput. Intell. , vol.11 , pp. 371-388
    • Skowron, A.1
  • 33
    • 0037213698 scopus 로고    scopus 로고
    • Mining stock price using fuzzy rough set system
    • Y.F. Wang Mining stock price using fuzzy rough set system Expert Syst. Appl. 24 2003 13 23
    • (2003) Expert Syst. Appl. , vol.24 , pp. 13-23
    • Wang, Y.F.1
  • 34
    • 0035155557 scopus 로고    scopus 로고
    • Information granulation and rough set approximation
    • Y.Y. Yao Information granulation and rough set approximation Int. J. Intelligent Syst. 16 2001 87 104
    • (2001) Int. J. Intelligent Syst. , vol.16 , pp. 87-104
    • Yao, Y.Y.1
  • 36
    • 34248666540 scopus 로고
    • Fuzzy sets
    • L. Zadeh Fuzzy sets Inf. Control 8 1965 338 353
    • (1965) Inf. Control , vol.8 , pp. 338-353
    • Zadeh, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.