메뉴 건너뛰기




Volumn , Issue , 2011, Pages 263-275

A machine learning approach for probabilistic drought classification

Author keywords

[No Author keywords available]

Indexed keywords

DROUGHT CLASSIFICATIONS; MACHINE LEARNING APPROACHES; MODEL UNCERTAINTIES; PALMER DROUGHT SEVERITY INDICES; PRECIPITATION DATA; PROBABILISTIC TREATMENTS; SPATIO-TEMPORAL VARIATION; STANDARDIZED PRECIPITATION INDEX;

EID: 84881325618     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1)

References (17)
  • 1
    • 0004157324 scopus 로고
    • WMO Publication No. 182, second edition, World Meteorological Organization, Geneva, Switzerland
    • WMO. International Meteorological Vocabulary, Publication No. 182, second edition, World Meteorological Organization, Geneva, Switzerland, 1992.
    • (1992) International Meteorological Vocabulary
  • 2
    • 0036700088 scopus 로고    scopus 로고
    • A review of twentieth-century drought indices used in The United States
    • R. R. Heim. A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorological Society, 83(8): 1149-1165, 2002.
    • (2002) Bulletin of the American Meteorological Society , vol.83 , Issue.8 , pp. 1149-1165
    • Heim, R.R.1
  • 3
    • 0010987376 scopus 로고
    • Graphical method of representing and comparing drought intensities
    • T. T. Munger. Graphical method of representing and comparing drought intensities. Mon. Weather Review, 44, 642-643, 1916.
    • (1916) Mon. Weather Review , vol.44 , pp. 642-643
    • Munger, T.T.1
  • 4
    • 0011026398 scopus 로고
    • Drought in The United States analyzed by means of the theory of probability
    • G. Blumenstock Jr. Drought in the United States analyzed by means of the theory of probability. USDA Tech. Bull., 819, 1942.
    • (1942) USDA Tech. Bull. , vol.819
    • Blumenstock Jr., G.1
  • 5
    • 0010985755 scopus 로고
    • A simple index of drought conditions
    • J. McQuigg. A simple index of drought conditions. Weatherwise, 7, 64-67, 1954.
    • (1954) Weatherwise , vol.7 , pp. 64-67
    • McQuigg, J.1
  • 6
    • 0003255373 scopus 로고
    • Meteorological drought
    • Weather Bureau, Washington, D. C.
    • W. C. Palmer. Meteorological drought. Res. Paper No. 45, Weather Bureau, Washington, D. C., 1965.
    • (1965) Res. Paper No. 45
    • Palmer, W.C.1
  • 7
    • 0000002007 scopus 로고
    • Keeping track of crop moisture conditions, nationwide: The new crop moisture index
    • W. C. Palmer. Keeping track of crop moisture conditions, nationwide: The new Crop Moisture Index. Weatherwise, 21, 156-161, 1968.
    • (1968) Weatherwise , vol.21 , pp. 156-161
    • Palmer, W.C.1
  • 8
    • 0020439497 scopus 로고
    • Development of a surface water supply index (SWSI) to assess the severity of drought conditions in snowpack runoff areas
    • Colorado State University, Fort Collins, Colorado
    • B. A. Shafer and L. E. Dezman. Development of a surface water supply index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. Proceedings of the Western Snow Conference, 164-175, Colorado State University, Fort Collins, Colorado, 1982.
    • (1982) Proceedings of the Western Snow Conference , pp. 164-175
    • Shafer, B.A.1    Dezman, L.E.2
  • 11
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2): 257-286, 1989.
    • (1989) Proceedings of the IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 12
    • 0037466482 scopus 로고    scopus 로고
    • A hidden Markov model for modelling long-term persistence in multi-site rainfall time series 1. Model calibration using a Bayesian approach
    • M. Thyer and G. Kuczera. A hidden Markov model for modelling long-term persistence in multi-site rainfall time series 1. Model calibration using a Bayesian approach. Journal of Hydrology, 275(1-2): 12-26, 2003.
    • (2003) Journal of Hydrology , vol.275 , Issue.1-2 , pp. 12-26
    • Thyer, M.1    Kuczera, G.2
  • 14
    • 33846516584 scopus 로고    scopus 로고
    • Information Science and Statistics, first edition, Springer, New York, USA
    • C. M. Bishop. Pattern Recognition and Machine Learning. Information Science and Statistics, first edition, Springer, New York, USA, 2006.
    • (2006) Pattern Recognition and Machine Learning
    • Bishop, C.M.1
  • 15
    • 57849159184 scopus 로고    scopus 로고
    • Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data
    • doi:10.1029/2008GL035143
    • M. Rajeevan, J. Bhate and A.K. Jaswal. Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophysical Research Letters, 35, L18707, doi: 10.1029/2008GL035143, 2008.
    • (2008) Geophysical Research Letters , vol.35
    • Rajeevan, M.1    Bhate, J.2    Jaswal, A.K.3
  • 16
    • 33747833684 scopus 로고    scopus 로고
    • High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells
    • M. Rajeevan, J. Bhate, J. D. Kale and B. Lal. High resolution daily gridded rainfall data for the Indian region: analysis of break and active monsoon spells. Current Science, 91(3): 296-306, 2006.
    • (2006) Current Science , vol.91 , Issue.3 , pp. 296-306
    • Rajeevan, M.1    Bhate, J.2    Kale, J.D.3    Lal, B.4
  • 17
    • 27744593245 scopus 로고    scopus 로고
    • Monsoon prediction-why yet another failure?
    • S. Gadgil, M. Rajeevan and R. Nanjundiah. Monsoon prediction-why yet another failure? Current Science 88: 1389-1400, 2005.
    • (2005) Current Science , vol.88 , pp. 1389-1400
    • Gadgil, S.1    Rajeevan, M.2    Nanjundiah, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.