메뉴 건너뛰기




Volumn 37, Issue 11, 2013, Pages 1331-1338

Two-dimensional Legendre wavelets for solving fractional Poisson equation with Dirichlet boundary conditions

Author keywords

Dirichlet boundary condition; Fractional derivative; Legendre wavelets; Poisson equation

Indexed keywords

ALGEBRAIC EQUATIONS; DIRICHLET BOUNDARY CONDITION; FRACTIONAL DERIVATIVES; LEGENDRE WAVELETSS; NUMERICAL SOLUTION; OPERATIONAL MATRICES;

EID: 84881283092     PISSN: 09557997     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enganabound.2013.07.002     Document Type: Article
Times cited : (79)

References (28)
  • 1
    • 84865372389 scopus 로고    scopus 로고
    • Error analysis for numerical solution of fractional differential equation by Haar wavelets method
    • Chen Y, Yi M, Yu Ch. Error analysis for numerical solution of fractional differential equation by Haar wavelets method. J Comput Sci 2012;3(5):367-73.
    • (2012) J Comput Sci , vol.3 , Issue.5 , pp. 367-373
    • Chen, Y.1    Yi, M.2    Yu, Ch.3
  • 2
    • 77956412154 scopus 로고    scopus 로고
    • Analysis of stability and convergence of numerical approximation for the Riesz fractional reaction-dispersion equation
    • J. Chen Analysis of stability and convergence of numerical approximation for the Riesz fractional reaction-dispersion equation J Xiamen Univ Nat Sci 46 5 2007 616 619
    • (2007) J Xiamen Univ Nat Sci , vol.46 , Issue.5 , pp. 616-619
    • Chen, J.1
  • 3
    • 1542425102 scopus 로고    scopus 로고
    • Numerical solution of the space fractional Fokker-Planck equation
    • DOI 10.1016/j.cam.2003.09.028, PII S0377042703008616
    • F. Liu, V. Anh, and I. Turner Numerical solution of the space fractional Fokker-Planck equation J Comput Appl Math 166 1 2004 209 219 (Pubitemid 38342127)
    • (2004) Journal of Computational and Applied Mathematics , vol.166 , Issue.1 , pp. 209-219
    • Liu, F.1    Anh, V.2    Turner, I.3
  • 4
    • 51749116733 scopus 로고    scopus 로고
    • Finite difference approximations for the fractional Fokker-Planck equation
    • S. Chen, and F. Liu Finite difference approximations for the fractional Fokker-Planck equation Appl Math Model 33 1 2009 256 273
    • (2009) Appl Math Model , vol.33 , Issue.1 , pp. 256-273
    • Chen, S.1    Liu, F.2
  • 5
    • 84868611111 scopus 로고    scopus 로고
    • The Dirihlet problem for the fractional Poisson's equation with Caputo derivatives a finite difference approximation and a numerical solution
    • V.D. Beibalaev, and R.P. Meilanov The Dirihlet problem for the fractional Poisson's equation with Caputo derivatives a finite difference approximation and a numerical solution Thermal Sci 16 2 2012 294 385
    • (2012) Thermal Sci , vol.16 , Issue.2 , pp. 294-385
    • Beibalaev, V.D.1    Meilanov, R.P.2
  • 6
    • 76449113714 scopus 로고    scopus 로고
    • Fractional diffusion equations by the Kansa method
    • W. Chen, L. Ye, and H. Sun Fractional diffusion equations by the Kansa method Comput Math Appl 59 2010 1614 1620
    • (2010) Comput Math Appl , vol.59 , pp. 1614-1620
    • Chen, W.1    Ye, L.2    Sun, H.3
  • 7
    • 84861204912 scopus 로고    scopus 로고
    • Finite difference schemes for variable-order time fractional diffusion equation
    • H.G. Sun, W. Chen, C. Li, and Y.Q. Chen Finite difference schemes for variable-order time fractional diffusion equation Int J Bifurcation Chaos 22 4 2012 1250085
    • (2012) Int J Bifurcation Chaos , vol.22 , Issue.4 , pp. 1250085
    • Sun, H.G.1    Chen, W.2    Li, C.3    Chen, Y.Q.4
  • 8
    • 84871003930 scopus 로고    scopus 로고
    • Boundary particle method for laplace transformed time fractional diffusion equations
    • W.C.Z.J. Fu, and H. Yang Boundary particle method for laplace transformed time fractional diffusion equations J Comput Phys 235 2013 52 66
    • (2013) J Comput Phys , vol.235 , pp. 52-66
    • Fu, W.C.Z.J.1    Yang, H.2
  • 11
    • 84881272856 scopus 로고    scopus 로고
    • Wavelets and their application for the solution of Poisson's and Schrödinger's equation
    • S. Goedecker Wavelets and their application for the solution of Poisson's and Schrödinger's equation Multiscale Simulation Methods Mol Sci 42 2009 507 534
    • (2009) Multiscale Simulation Methods Mol Sci , vol.42 , pp. 507-534
    • Goedecker, S.1
  • 12
    • 79952985609 scopus 로고    scopus 로고
    • Solving PDEs with the aid of two-dimensional Haar wavelets
    • U. Lepik Solving PDEs with the aid of two-dimensional Haar wavelets Comput Math Appl 61 2011 1873 1879
    • (2011) Comput Math Appl , vol.61 , pp. 1873-1879
    • Lepik, U.1
  • 14
    • 17444389881 scopus 로고    scopus 로고
    • Haar wavelets based technique in evolution problems
    • C. Cattani Haar wavelets based technique in evolution problems Chaos Proc Estonian Acad Sci Phys Math 1 2004 45 63
    • (2004) Chaos Proc Estonian Acad Sci Phys Math , vol.1 , pp. 45-63
    • Cattani, C.1
  • 15
    • 33750729607 scopus 로고    scopus 로고
    • Explicit formulas for wavelet-homogenized coefficients of elliptic operators
    • N. Coult Explicit formulas for wavelet-homogenized coefficients of elliptic operators Appl Comput Harmon Anal 21 2001 360 375
    • (2001) Appl Comput Harmon Anal , vol.21 , pp. 360-375
    • Coult, N.1
  • 16
    • 70449534671 scopus 로고    scopus 로고
    • A study of multiscale wavelet-based elements for adaptive finite element analysis
    • X. Chen, J. Xiang, B. Li, and Z. He A study of multiscale wavelet-based elements for adaptive finite element analysis Adv Eng Software 41 2010 196 205
    • (2010) Adv Eng Software , vol.41 , pp. 196-205
    • Chen, X.1    Xiang, J.2    Li, B.3    He, Z.4
  • 17
    • 64849115449 scopus 로고    scopus 로고
    • Haar wavelet method for solving Fisher's equation
    • G. Hariharan, K. Kannan, and K. Sharma Haar wavelet method for solving Fisher's equation Appl Math Comput 211 2 2009 284 292
    • (2009) Appl Math Comput , vol.211 , Issue.2 , pp. 284-292
    • Hariharan, G.1    Kannan, K.2    Sharma, K.3
  • 18
    • 33947638928 scopus 로고    scopus 로고
    • From two-dimensional nonlinear diffusion to coupled Haar wavelet shrinkage
    • DOI 10.1016/j.jvcir.2007.01.002, PII S1047320307000041
    • P. Mrazek, and J. Weickert From two-dimensional nonlinear diffusion to coupled Haar wavelet shrinkage J Vis Commun Image Represent 18 2007 162 175 (Pubitemid 46497836)
    • (2007) Journal of Visual Communication and Image Representation , vol.18 , Issue.2 , pp. 162-175
    • Mrazek, P.1    Weickert, J.2
  • 19
    • 70350122911 scopus 로고    scopus 로고
    • A 2-d continuous wavelet transform of mode shape data for damage detection of plate structures
    • W. Fan, and P. Qiao A 2-d continuous wavelet transform of mode shape data for damage detection of plate structures Int J Solids Struct 46 2003 6473 6496
    • (2003) Int J Solids Struct , vol.46 , pp. 6473-6496
    • Fan, W.1    Qiao, P.2
  • 20
    • 0141795403 scopus 로고    scopus 로고
    • Adaptive multiscale wavelet-Galerkin analysis for plane elasticity problems and its applications to multiscale topology design optimization
    • DOI 10.1016/S0020-7683(03)00417-7
    • J.E. Kim, G.-W. Yang, and Y.Y. Kim Adaptive multiscale wavelet-Galerkin analysis for plane elasticity problems and its application to multiscale topology design optimization Int J Solids Struct 40 2003 6473 6496 (Pubitemid 37216661)
    • (2003) International Journal of Solids and Structures , vol.40 , Issue.23 , pp. 6473-6496
    • Kim, J.E.1    Jang, G.-W.2    Kim, Y.Y.3
  • 21
    • 0442327406 scopus 로고    scopus 로고
    • The natural integral equations of plane elasticity problems and its wavelet methods
    • Y. Shen, and W. Li The natural integral equations of plane elasticity problems and its wavelet methods Appl Math Comput 150 2 2004 417 438
    • (2004) Appl Math Comput , vol.150 , Issue.2 , pp. 417-438
    • Shen, Y.1    Li, W.2
  • 22
    • 65449142896 scopus 로고    scopus 로고
    • Three-dimensional analysis of functionally graded plate based on the Haar wavelet method
    • Z. Chun, and Z. Zheng Three-dimensional analysis of functionally graded plate based on the Haar wavelet method Acta Mech Solida Sin 20 2 2007 95 102
    • (2007) Acta Mech Solida Sin , vol.20 , Issue.2 , pp. 95-102
    • Chun, Z.1    Zheng, Z.2
  • 23
    • 41549124076 scopus 로고    scopus 로고
    • A probabilistic method for the detection of obstructed cracks of beam-type structures using spacial wavelet transform
    • H.F. Lam, and C.T. Ng A probabilistic method for the detection of obstructed cracks of beam-type structures using spacial wavelet transform Probab Eng Mech 23 2008 239 245
    • (2008) Probab Eng Mech , vol.23 , pp. 239-245
    • Lam, H.F.1    Ng, C.T.2
  • 24
    • 64849088409 scopus 로고    scopus 로고
    • Weak formulation based Haar wavelet method for solving differential equations
    • J. Majak, M. Pohlak, M. Eerme, and T. Lepikult Weak formulation based Haar wavelet method for solving differential equations Appl Math Comput 211 2009 488 494
    • (2009) Appl Math Comput , vol.211 , pp. 488-494
    • Majak, J.1    Pohlak, M.2    Eerme, M.3    Lepikult, T.4
  • 25
    • 77950368621 scopus 로고    scopus 로고
    • A wavelet collocation method for the static analysis of sandwich plates using a layerwise theory
    • L.M.S. Castro, A. Ferreira, S. Bertoluzza, R. Patra, and J. Reddy A wavelet collocation method for the static analysis of sandwich plates using a layerwise theory Compos Struct 92 2010 1786 1792
    • (2010) Compos Struct , vol.92 , pp. 1786-1792
    • Castro, L.M.S.1    Ferreira, A.2    Bertoluzza, S.3    Patra, R.4    Reddy, J.5
  • 26
    • 84858110986 scopus 로고    scopus 로고
    • Wavelet collocation method for solving multi order fractional differential equations
    • ARTICLE ID 10.1155/2012/542401/542401
    • M.H. Heydari, M.R. Hooshmandasl, F.M.M. Ghaini, and F. Mohammadi Wavelet collocation method for solving multi order fractional differential equations J Appl Math Article ID 542401 2012 19 10.1155/2012/542401
    • (2012) J Appl Math , pp. 19
    • Heydari, M.H.1    Hooshmandasl, M.R.2    Ghaini, F.M.M.3    Mohammadi, F.4
  • 27
    • 73449118638 scopus 로고    scopus 로고
    • Legendre wavelet method for numerical solutions of partial differential equations
    • L. Nanshan, and E.B. Lin Legendre wavelet method for numerical solutions of partial differential equations Numer Methods Partial Differ Equations 2009 81 94
    • (2009) Numer Methods Partial Differ Equations , pp. 81-94
    • Nanshan, L.1    Lin, E.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.