-
1
-
-
0025448521
-
The strength of weak learnability
-
Schapire R. The strength of weak learnability. Mach. Learn. 1990, 5:197-227.
-
(1990)
Mach. Learn.
, vol.5
, pp. 197-227
-
-
Schapire, R.1
-
2
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund Y., Schapire R. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55:119-139.
-
(1997)
J. Comput. Syst. Sci.
, vol.55
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.2
-
3
-
-
0032280519
-
Boosting the margin. a new explanation for the effectiveness of voting methods
-
Schapire R., Freund Y., Bartlett P., Lee W. Boosting the margin. a new explanation for the effectiveness of voting methods. Ann. Stat. 1998, 26:1651-1686.
-
(1998)
Ann. Stat.
, vol.26
, pp. 1651-1686
-
-
Schapire, R.1
Freund, Y.2
Bartlett, P.3
Lee, W.4
-
4
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
Schapire R., Singer Y. Improved boosting algorithms using confidence-rated predictions. Mach. Learn. 1999, 37:297-336.
-
(1999)
Mach. Learn.
, vol.37
, pp. 297-336
-
-
Schapire, R.1
Singer, Y.2
-
5
-
-
0000551189
-
Popular ensemble methods. an empirical study
-
Opitz D., Maclin R. Popular ensemble methods. an empirical study. J. Artif. Intell. Res. 1999, 11:169-198.
-
(1999)
J. Artif. Intell. Res.
, vol.11
, pp. 169-198
-
-
Opitz, D.1
Maclin, R.2
-
6
-
-
0034164230
-
Additive logistic regression. a statistical view of boosting
-
Friedman J., Hastie T., Tibshirani R. Additive logistic regression. a statistical view of boosting. Ann. Stat. 2000, 28:337-407.
-
(2000)
Ann. Stat.
, vol.28
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
7
-
-
41549131613
-
Evidence contrary to the statistical view of boosting
-
Mease D., Wyner A. Evidence contrary to the statistical view of boosting. J. Mach. Learn. Res. 2008, 9:175-194.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 175-194
-
-
Mease, D.1
Wyner, A.2
-
8
-
-
2142812371
-
Robust real-time face detection
-
Viola P., Jones M. Robust real-time face detection. Int. J. Comput. Vision 2004, 57:137-154.
-
(2004)
Int. J. Comput. Vision
, vol.57
, pp. 137-154
-
-
Viola, P.1
Jones, M.2
-
10
-
-
84867577175
-
The foundations of cost-sensitive learning
-
Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence
-
C. Elkan, The foundations of cost-sensitive learning, in: Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, 2001, pp. 973-978.
-
(2001)
, pp. 973-978
-
-
Elkan, C.1
-
11
-
-
1442275185
-
Learning when training data are costly. the effect of class distribution on tree induction
-
Weiss G., Provost F. Learning when training data are costly. the effect of class distribution on tree induction. J. Artif. Intell. Res. 2003, 19:315-354.
-
(2003)
J. Artif. Intell. Res.
, vol.19
, pp. 315-354
-
-
Weiss, G.1
Provost, F.2
-
12
-
-
84899002132
-
Optimizing classifiers for imbalanced training sets
-
Advances in Neural Information Processing Systems
-
G. Karakoulas, J. Shawe-Taylor, Optimizing classifiers for imbalanced training sets, in: Advances in Neural Information Processing Systems, vol. 12, 1999, pp. 253-259.
-
(1999)
, vol.12
, pp. 253-259
-
-
Karakoulas, G.1
Shawe-Taylor, J.2
-
13
-
-
0013316935
-
AdaCost: misclassification cost-sensitive boosting
-
Proceedings of the 16th International Conference on Machine Learning
-
W. Fan, S. Stolfo, J. Zhang, P. Chan, AdaCost: misclassification cost-sensitive boosting, in: Proceedings of the 16th International Conference on Machine Learning, 1999, pp. 97-105.
-
(1999)
, pp. 97-105
-
-
Fan, W.1
Stolfo, S.2
Zhang, J.3
Chan, P.4
-
14
-
-
0002804620
-
A comparative study of cost-sensitive boosting algorithms
-
Proceedings of the 17th International Conference on Machine Learning
-
K. Ting, A comparative study of cost-sensitive boosting algorithms, in: Proceedings of the 17th International Conference on Machine Learning, 2000, pp. 983-990.
-
(2000)
, pp. 983-990
-
-
Ting, K.1
-
15
-
-
2442516613
-
Fast and robust classification using asymmetric AdaBoost and a detector cascade
-
Advances in Neural Information Processing Systems
-
P. Viola, M. Jones, Fast and robust classification using asymmetric AdaBoost and a detector cascade, in: Advances in Neural Information Processing Systems, vol. 14, 2001.
-
(2001)
, vol.14
-
-
Viola, P.1
Jones, M.2
-
16
-
-
34547673383
-
Cost-sensitive boosting for classification of imbalanced data
-
Sun Y., Kamel M., Wong A., Wang Y. Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition 2007, 40:3358-3378.
-
(2007)
Pattern Recognition
, vol.40
, pp. 3358-3378
-
-
Sun, Y.1
Kamel, M.2
Wong, A.3
Wang, Y.4
-
18
-
-
84881233917
-
Asymmetric boosting, in: Proceedings of the 24th International Conference on Machine Learning
-
H. Masnadi-Shirazi, N. Vasconcelos, Asymmetric boosting, in: Proceedings of the 24th International Conference on Machine Learning.
-
-
-
Masnadi-Shirazi, H.1
Vasconcelos, N.2
-
19
-
-
83455195511
-
Shedding light on the asymmetric learning capability of AdaBoost
-
Landesa-Vázquez I., Alba-Castro J. Shedding light on the asymmetric learning capability of AdaBoost. Pattern Recognition Lett. 2012, 33:247-255.
-
(2012)
Pattern Recognition Lett.
, vol.33
, pp. 247-255
-
-
Landesa-Vázquez, I.1
Alba-Castro, J.2
-
21
-
-
85101511266
-
Analysis and visualization of classifier performance: comparison under imprecise class and cost distributions
-
Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, AAAI Press
-
F. Provost, T. Fawcett, Analysis and visualization of classifier performance: comparison under imprecise class and cost distributions, in: Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, AAAI Press, 1997, pp. 43-48.
-
(1997)
, pp. 43-48
-
-
Provost, F.1
Fawcett, T.2
-
22
-
-
33646023117
-
An introduction to ROC analysis
-
Fawcett T. An introduction to ROC analysis. Pattern Recognition Lett. 2006, 27:861-874.
-
(2006)
Pattern Recognition Lett.
, vol.27
, pp. 861-874
-
-
Fawcett, T.1
-
23
-
-
0034592774
-
Explicitly representing expected cost: an alternative to ROC representation
-
Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '00, ACM
-
C. Drummond, R. Holte, Explicitly representing expected cost: an alternative to ROC representation, in: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '00, ACM, 2000, pp. 198-207.
-
(2000)
, pp. 198-207
-
-
Drummond, C.1
Holte, R.2
-
24
-
-
84881234019
-
-
UCI Machine Learning Repository
-
A. Frank, A. Asuncion, UCI Machine Learning Repository, 2010.
-
(2010)
-
-
Frank, A.1
Asuncion, A.2
-
25
-
-
0038975426
-
Finding a zero by means of successive linear interpolation
-
Wiley Interscience, B. Dejon, P. Henrici (Eds.)
-
Dekker T.J. Finding a zero by means of successive linear interpolation. Constructive Aspects of the Fundamental Theorem of Algebra 1969, 37-48. Wiley Interscience. B. Dejon, P. Henrici (Eds.).
-
(1969)
Constructive Aspects of the Fundamental Theorem of Algebra
, pp. 37-48
-
-
Dekker, T.J.1
-
27
-
-
0003941277
-
Face detection in still gray images
-
A.I. memo 1687, Center for Biological and Computational Learning, MIT, Cambridge, MA
-
B. Heisele, T. Poggio, M. Pontil, Face detection in still gray images, A.I. memo 1687, Center for Biological and Computational Learning, MIT, Cambridge, MA, 2000.
-
(2000)
-
-
Heisele, B.1
Poggio, T.2
Pontil, M.3
-
28
-
-
23944455002
-
An empirical comparison of SNoW and SVMs for face detection
-
A.I. memo 2001-004, Center for Biological and Computational Learning, MIT, Cambridge, MA
-
M. Alvira, R. Rifkin, An empirical comparison of SNoW and SVMs for face detection, A.I. memo 2001-004, Center for Biological and Computational Learning, MIT, Cambridge, MA, 2001.
-
(2001)
-
-
Alvira, M.1
Rifkin, R.2
|