메뉴 건너뛰기




Volumn , Issue , 2013, Pages 83-95

Leveraging graphical models to improve accuracy and reduce privacy risks of mobile sensing

Author keywords

Continuous context sensing; Energy Accuracy Privacy optimizations; Mobile computing

Indexed keywords

ACTIVITY CLASSIFICATIONS; CONTINUOUS CONTEXT-SENSING; DYNAMIC BAYESIAN NETWORKS; PRIVATE INFORMATION; REDUCE ENERGY CONSUMPTION; SYSTEM ARCHITECTURES; SYSTEMS OPTIMIZATION; TEMPORAL SMOOTHING;

EID: 84881178016     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2462456.2464457     Document Type: Conference Paper
Times cited : (27)

References (21)
  • 1
    • 84881131516 scopus 로고    scopus 로고
    • Java bayes. http://www.cs.cmu.edu/javabayes/.
    • Java Bayes
  • 2
    • 35048842427 scopus 로고    scopus 로고
    • Activity recognition from user-annotated acceleration data
    • L. Bao and S. S. Intille. Activity Recognition from User-Annotated Acceleration Data. Pervasive Computing, pages 1-17, 2004.
    • (2004) Pervasive Computing , pp. 1-17
    • Bao, L.1    Intille, S.S.2
  • 3
    • 33749644725 scopus 로고    scopus 로고
    • Approximate data collection in sensor networks using probabilistic models
    • page 48
    • D. Chu, A. Deshpande, J. M. Hellerstein, and W. Hong. Approximate Data Collection in Sensor Networks using Probabilistic Models. In ICDE, page 48, 2006.
    • (2006) ICDE
    • Chu, D.1    Deshpande, A.2    Hellerstein, J.M.3    Hong, W.4
  • 4
    • 83455223701 scopus 로고    scopus 로고
    • Balancing energy, latency and accuracy for mobile sensor data classification
    • D. Chu, N. Lane, T. Lai, C. Pang, F. Li, X. Meng, Q. Guo, and F. Zhao. Balancing energy, latency and accuracy for mobile sensor data classification. In SenSys, pages 54-67, 2011.
    • (2011) SenSys , pp. 54-67
    • Chu, D.1    Lane, N.2    Lai, T.3    Pang, C.4    Li, F.5    Meng, X.6    Guo, Q.7    Zhao, F.8
  • 5
    • 28444450448 scopus 로고    scopus 로고
    • Exploiting correlated attributes in acquisitional query processing
    • A. Deshpande, C. Guestrin, W. Hong, and S. Madden. Exploiting correlated attributes in acquisitional query processing. In ICDE, pages 143-154, 2005.
    • (2005) ICDE , pp. 143-154
    • Deshpande, A.1    Guestrin, C.2    Hong, W.3    Madden, S.4
  • 7
    • 0000854197 scopus 로고    scopus 로고
    • Learning the structure of dynamic probabilistic networks
    • N. Friedman, K. Murphy, and S. Russell. Learning the Structure of Dynamic Probabilistic Networks. In UAI, pages 139-147, 1999.
    • (1999) UAI , pp. 139-147
    • Friedman, N.1    Murphy, K.2    Russell, S.3
  • 8
    • 84862643033 scopus 로고    scopus 로고
    • Maskit: Privately releasing user context streams for personalized mobile applications
    • ACM
    • M. Götz, S. Nath, and J. Gehrke. Maskit: privately releasing user context streams for personalized mobile applications. In SIGMOD, pages 289-300, 2012. ACM.
    • (2012) SIGMOD , pp. 289-300
    • Götz, M.1    Nath, S.2    Gehrke, J.3
  • 10
    • 67650691734 scopus 로고    scopus 로고
    • Near-optimal nonmyopic value of information in graphical models
    • A. Krause and C. Guestrin. Near-optimal Nonmyopic Value of Information in Graphical Models. In UAI, pages 324-331, 2005.
    • (2005) UAI , pp. 324-331
    • Krause, A.1    Guestrin, C.2
  • 11
    • 84880762436 scopus 로고    scopus 로고
    • A hybrid discriminative/generative approach for modeling human activities
    • J. Lester, T. Choudhury, N. Kern, G. Borriello, and B. Hannaford. A hybrid discriminative/generative approach for modeling human activities. In IJCAI, pages 766-772, 2005.
    • (2005) IJCAI , pp. 766-772
    • Lester, J.1    Choudhury, T.2    Kern, N.3    Borriello, G.4    Hannaford, B.5
  • 12
    • 40949102724 scopus 로고    scopus 로고
    • Presto: Feedback-driven data management in sensor networks
    • page 23
    • M. Li, D. Ganesan, and P. Shenoy. Presto: feedback-driven data management in sensor networks. In NSDI, page 23, 2006.
    • (2006) NSDI
    • Li, M.1    Ganesan, D.2    Shenoy, P.3
  • 13
    • 78650898251 scopus 로고    scopus 로고
    • The jigsaw continuous sensing engine for mobile phone applications
    • H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. Campbell. The jigsaw continuous sensing engine for mobile phone applications. In SenSys, pages 71-84, 2010.
    • (2010) SenSys , pp. 71-84
    • Lu, H.1    Yang, J.2    Liu, Z.3    Lane, N.D.4    Choudhury, T.5    Campbell, A.6
  • 14
    • 71049185936 scopus 로고    scopus 로고
    • Approximating sensor network queries using in-network summaries
    • IEEE
    • A. Meliou, C. Guestrin, and J. M. Hellerstein. Approximating sensor network queries using in-network summaries. In IPSN, pages 229-240. IEEE, 2009.
    • (2009) IPSN , pp. 229-240
    • Meliou, A.1    Guestrin, C.2    Hellerstein, J.M.3
  • 16
    • 0000095809 scopus 로고
    • An analysis of approximations for maximizing submodular set functions-I
    • Dec.
    • G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing submodular set functions-I. Mathematical Programming, 14(1):265-294, Dec. 1978.
    • (1978) Mathematical Programming , vol.14 , Issue.1 , pp. 265-294
    • Nemhauser, G.L.1    Wolsey, L.A.2    Fisher, M.L.3
  • 20
    • 29344474528 scopus 로고    scopus 로고
    • Activity recognition from accelerometer data
    • N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman. Activity recognition from accelerometer data. In IAAI, pages 1541-1546, 2005.
    • (2005) IAAI , pp. 1541-1546
    • Ravi, N.1    Dandekar, N.2    Mysore, P.3    Littman, M.L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.