메뉴 건너뛰기




Volumn , Issue , 2013, Pages 14-21

Parameter estimation and contextual adaptation for a multi-object tracking CRF model

Author keywords

[No Author keywords available]

Indexed keywords

BETTER PERFORMANCE; COLOR SIMILARITY; CONDITIONAL RANDOM FIELD; CONTEXTUAL ADAPTATIONS; CONTEXTUAL INFORMATION; MULTI-OBJECT TRACKING; PARAMETER ADAPTATION; STATE-OF-THE-ART ALGORITHMS;

EID: 84881109310     PISSN: 2157491X     EISSN: 21574928     Source Type: Conference Proceeding    
DOI: 10.1109/PETS.2013.6523790     Document Type: Conference Paper
Times cited : (8)

References (26)
  • 1
    • 84881092164 scopus 로고    scopus 로고
    • http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/.
  • 2
    • 84881085051 scopus 로고    scopus 로고
    • http://www.cvg.rdg.ac.uk/PETS2009/.
  • 3
    • 84866674830 scopus 로고    scopus 로고
    • Discrete-continuous optimization for multi-target tracking
    • A. Andriyenko, K. Schindler, and S. Roth. Discrete-continuous optimization for multi-target tracking. In CVPR, 2012.
    • (2012) CVPR
    • Andriyenko, A.1    Schindler, K.2    Roth, S.3
  • 4
    • 80052891563 scopus 로고    scopus 로고
    • A stochastic graph evolution framework for robust multi-target tracking
    • B. Song, T.-Y. Jeng, E. Staudt, and A. K. Roy-Chowdhury. A stochastic graph evolution framework for robust multi-target tracking. In ECCV, 2010.
    • (2010) ECCV
    • Song, B.1    Jeng, T.-Y.2    Staudt, E.3    Roy-Chowdhury, A.K.4
  • 5
    • 80052911158 scopus 로고    scopus 로고
    • Learning affinities and dependencies for multi-target tracking using a CRF model
    • B. Yang, C. Huang, and R. Nevatia. Learning affinities and dependencies for multi-target tracking using a CRF model. In CVPR, 2011.
    • (2011) CVPR
    • Yang, B.1    Huang, C.2    Nevatia, R.3
  • 6
    • 84866654237 scopus 로고    scopus 로고
    • An online learned CRF model for multitarget tracking
    • B. Yang and R. Nevatia. An online learned CRF model for multitarget tracking. In CVPR, 2012.
    • (2012) CVPR
    • Yang, B.1    Nevatia, R.2
  • 7
    • 77950607840 scopus 로고    scopus 로고
    • Multiple object tracking using flow linear programming
    • J. Berclaz, F. Fleuret, and P. Fua. Multiple object tracking using flow linear programming. In Winter-PETS, 2009.
    • (2009) Winter-PETS
    • Berclaz, J.1    Fleuret, F.2    Fua, P.3
  • 8
    • 47649110844 scopus 로고    scopus 로고
    • Evaluating multiple object tracking performance: The clear mot metrics
    • K. Bernardin and R. Stiefelhagen. Evaluating multiple object tracking performance: the clear mot metrics. J. Image Video Process., 2008.
    • (2008) J. Image Video Process.
    • Bernardin, K.1    Stiefelhagen, R.2
  • 9
    • 84863052713 scopus 로고    scopus 로고
    • A joint estimation of head and body orientation cues in surveillance video
    • C. Chen, A. Heili, and J.-M. Odobez. A joint estimation of head and body orientation cues in surveillance video. In ICCV, SISM Workshop, 2011.
    • (2011) ICCV, SISM Workshop
    • Chen, C.1    Heili, A.2    Odobez, J.-M.3
  • 10
    • 84866691194 scopus 로고    scopus 로고
    • Multitarget data association with higher-order motion models
    • R. T. Collins. Multitarget data association with higher-order motion models. In CVPR, 2012.
    • (2012) CVPR
    • Collins, R.T.1
  • 11
    • 84898465753 scopus 로고    scopus 로고
    • The fastest pedestrian detector in the west
    • P. Dollár, S. Belongie, and P. Perona. The fastest pedestrian detector in the west. In BMVC, 2010.
    • (2010) BMVC
    • Dollár, P.1    Belongie, S.2    Perona, P.3
  • 13
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
    • November
    • S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell., November 1984.
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell.
    • Geman, S.1    Geman, D.2
  • 14
    • 84856656875 scopus 로고    scopus 로고
    • Multi-hypothesis motion planning for visual object tracking
    • H. Gong, J. Sim, M. Likhachev, and J. Shi. Multi-hypothesis motion planning for visual object tracking. In ICCV, 2011.
    • (2011) ICCV
    • Gong, H.1    Sim, J.2    Likhachev, M.3    Shi, J.4
  • 15
    • 80052904076 scopus 로고    scopus 로고
    • Globally-optimal greedy algorithms for tracking a variable number of objects
    • H. Pirsiavash, D. Ramanan, and C. C. Fowlkes. Globally-optimal greedy algorithms for tracking a variable number of objects. In CVPR, 2011.
    • (2011) CVPR
    • Pirsiavash, H.1    Ramanan, D.2    Fowlkes, C.C.3
  • 16
    • 84863054654 scopus 로고    scopus 로고
    • Detection-based multi-human tracking using a CRF model
    • A. Heili, C. Chen, and J.-M. Odobez. Detection-based multi-human tracking using a CRF model. In ICCV VS Workshop, 2011.
    • (2011) ICCV VS Workshop
    • Heili, A.1    Chen, C.2    Odobez, J.-M.3
  • 17
    • 70449606070 scopus 로고    scopus 로고
    • Robust object tracking by hierarchical association of detection responses
    • C. Huang, B. Wu, and R. Nevatia. Robust object tracking by hierarchical association of detection responses. In ECCV, 2008.
    • (2008) ECCV
    • Huang, C.1    Wu, B.2    Nevatia, R.3
  • 18
    • 70450214801 scopus 로고    scopus 로고
    • Learning to associate: Hybridboosted multi-target tracker for crowded scene
    • Y. Li, C. Huang, and R. Nevatia. Learning to associate: Hybridboosted multi-target tracker for crowded scene. In CVPR, 2009.
    • (2009) CVPR
    • Li, Y.1    Huang, C.2    Nevatia, R.3
  • 19
    • 84856635813 scopus 로고    scopus 로고
    • Density-aware person detection and tracking in crowds
    • M. Rodriguez, I. Laptev, J. Sivic, and J. Audibert. Density-aware person detection and tracking in crowds. In ICCV, 2011.
    • (2011) ICCV
    • Rodriguez, M.1    Laptev, I.2    Sivic, J.3    Audibert, J.4
  • 21
    • 51949110218 scopus 로고    scopus 로고
    • Boosting adaptive linear weak classifiers for online learning and tracking
    • T. Parag, F. Porikli, and A. M. Elgammal. Boosting adaptive linear weak classifiers for online learning and tracking. In CVPR, 2008.
    • (2008) CVPR
    • Parag, T.1    Porikli, F.2    Elgammal, A.M.3
  • 22
    • 84856667902 scopus 로고    scopus 로고
    • Tracking multiple people under global appearance constraints
    • H. B. Shitrit, J. Berclaz, F. Fleuret, and P. Fua. Tracking multiple people under global appearance constraints. In ICCV, 2011.
    • (2011) ICCV
    • Shitrit, H.B.1    Berclaz, J.2    Fleuret, F.3    Fua, P.4
  • 24
    • 77955992287 scopus 로고    scopus 로고
    • An online approach: Learning-semantic-scene-by-tracking and trackingby-learning-semantic-scene
    • X. Song, X. Shao, H. Zhao, J. Cui, R. Shibasaki, and H. Zha. An online approach: learning-semantic-scene-by-tracking and trackingby-learning-semantic- scene. In CVPR, 2010.
    • (2010) CVPR
    • Song, X.1    Shao, X.2    Zhao, H.3    Cui, J.4    Shibasaki, R.5    Zha, H.6
  • 25
    • 79958756016 scopus 로고    scopus 로고
    • Multi-camera multi-person 3D space tracking with MCMC in surveillance scenarios
    • J. Yao and J.-M. Odobez. Multi-camera multi-person 3D space tracking with MCMC in surveillance scenarios. In ECCV, M2SFA2 Workshop, 2008.
    • (2008) ECCV, M2SFA2 Workshop
    • Yao, J.1    Odobez, J.-M.2
  • 26
    • 51949088494 scopus 로고    scopus 로고
    • Global data association for multiobject tracking using network flows
    • L. Zhang, Y. Li, and R. Nevatia. Global data association for multiobject tracking using network flows. In CVPR, 2008.
    • (2008) CVPR
    • Zhang, L.1    Li, Y.2    Nevatia, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.