메뉴 건너뛰기




Volumn 46, Issue 12, 2013, Pages 3490-3506

One class random forests

Author keywords

Decision trees; Ensemble methods; One class classification; Outlier detection; Outlier generation; Random forests; Supervised learning

Indexed keywords

ENSEMBLE METHODS; ONE-CLASS CLASSIFICATION; OUTLIER DETECTION; OUTLIER GENERATIONS; RANDOM FORESTS;

EID: 84881077165     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2013.05.022     Document Type: Article
Times cited : (143)

References (92)
  • 1
    • 0030130884 scopus 로고    scopus 로고
    • Network constraints and multi-objective optimization for one-class classification
    • M. Moya, and D. Hush Network constraints and multi-objective optimization for one-class classification Neural Networks 9 3 1996 463 474
    • (1996) Neural Networks , vol.9 , Issue.3 , pp. 463-474
    • Moya, M.1    Hush, D.2
  • 4
    • 57649224377 scopus 로고    scopus 로고
    • An evaluation of one-class classification techniques for speaker verification
    • A. Brew, M. Grimaldi, and P. Cunningham An evaluation of one-class classification techniques for speaker verification Artificial Intelligence Review 27 4 2007 295 307
    • (2007) Artificial Intelligence Review , vol.27 , Issue.4 , pp. 295-307
    • Brew, A.1    Grimaldi, M.2    Cunningham, P.3
  • 6
    • 77954790951 scopus 로고    scopus 로고
    • Using artificial anomalies to detect unknown and known network intrusions
    • W. Fan, M. Miller, S. Stolfo, W. Lee, and P. Chan Using artificial anomalies to detect unknown and known network intrusions Knowledge and Information Systems 6 5 2004 507 527
    • (2004) Knowledge and Information Systems , vol.6 , Issue.5 , pp. 507-527
    • Fan, W.1    Miller, M.2    Stolfo, S.3    Lee, W.4    Chan, P.5
  • 8
    • 84870021480 scopus 로고    scopus 로고
    • A random forest based approach for one class classification in medical imaging
    • Nice France, LNCS 7588
    • C. Désir, S. Bernard, C. Petitjean, L. Heutte. A random forest based approach for one class classification in medical imaging. 3rd MICCAI International Workshop on Machine Learning in Medical Imaging (MLMI), Nice, France, LNCS 7588, 2012, pp. 250-257
    • (2012) 3rd MICCAI International Workshop on Machine Learning in Medical Imaging (MLMI) , pp. 250-257
    • Désir, C.1
  • 9
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • V. Hodge, and J. Austin A survey of outlier detection methodologies Artificial Intelligence Review 22 2 2004 85 126
    • (2004) Artificial Intelligence Review , vol.22 , Issue.2 , pp. 85-126
    • Hodge, V.1    Austin, J.2
  • 15
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Machine Learning 45 1 2001 5 32
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 18
    • 8844281752 scopus 로고    scopus 로고
    • Novelty detection in learning systems
    • S. Marsland Novelty detection in learning systems Neural Computing Surveys 3 2003 157 195
    • (2003) Neural Computing Surveys , vol.3 , pp. 157-195
    • Marsland, S.1
  • 19
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection a review-part 1: Statistical approaches
    • M. Markou, and S. Singh Novelty detection a review-part 1: statistical approaches Signal Processing 83 12 2003 2481 2497
    • (2003) Signal Processing , vol.83 , Issue.12 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 21
    • 84947734535 scopus 로고    scopus 로고
    • Outlier detection using classifier instability
    • D. Tax, R. Duin, Outlier detection using classifier instability, in: Lecture Notes in Computer Science, 1998, pp. 593-601.
    • (1998) Lecture Notes in Computer Science , pp. 593-601
    • Tax, D.1    Duin, R.2
  • 23
  • 28
    • 0017017305 scopus 로고
    • On the choice of smoothing parameters for Parzen estimators of probability density functions
    • R. Duin On the choice of smoothing parameters for Parzen estimators of probability density functions IEEE Transactions on Computers 100 11 1976 1175 1179
    • (1976) IEEE Transactions on Computers , vol.100 , Issue.11 , pp. 1175-1179
    • Duin, R.1
  • 29
    • 84874636968 scopus 로고
    • A Criterion for the Smoothing Parameter for Parzen-Estimators of Probability Density Functions
    • M. Kraaijveld, R. Duin, A Criterion for the Smoothing Parameter for Parzen-Estimators of Probability Density Functions, Technical Report, Delft University of Technology, 1991.
    • (1991) Technical Report, Delft University of Technology
    • Kraaijveld, M.1    Duin, R.2
  • 33
    • 0001614845 scopus 로고
    • A probabilistic resource allocating network for novelty detection
    • S. Roberts, and L. Tarassenko A probabilistic resource allocating network for novelty detection Neural Computation 6 2 1994 270 284
    • (1994) Neural Computation , vol.6 , Issue.2 , pp. 270-284
    • Roberts, S.1    Tarassenko, L.2
  • 34
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • D. Tax, and R. Duin Support vector data description Machine Learning 54 1 2004 45 66
    • (2004) Machine Learning , vol.54 , Issue.1 , pp. 45-66
    • Tax, D.1    Duin, R.2
  • 36
    • 78149465518 scopus 로고    scopus 로고
    • A Comparison Study between One-Class and Two-Class Machine Learning for MicroRNA Target Detection
    • M. Yousef, N. Najami and W. Khaliefa, A Comparison Study Between One-Class and Two-Class Machine Learning for MicroRNA Target Detection, Journal of Biomedical Science and Engineering 3, 2010, p. 247-252
    • (2010) Journal of Biomedical Science and Engineering 3 , pp. 247-252
    • Yousef, M.1    Najami, N.2    Khaliefa, W.3
  • 38
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: A review. Part 2: Neural network based approaches
    • M. Markou, and S. Singh Novelty detection: a review. Part 2: neural network based approaches Signal Processing 83 12 2003 2499 2521
    • (2003) Signal Processing , vol.83 , Issue.12 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 45
    • 70349303511 scopus 로고    scopus 로고
    • Ensembles of one class support vector machines
    • A. Shieh, and D. Kamm Ensembles of one class support vector machines Multiple Classifier Systems 2009 181 190
    • (2009) Multiple Classifier Systems , pp. 181-190
    • Shieh, A.1    Kamm, D.2
  • 47
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • J. Kittler, F. Roli, Springer URL
    • T. Dietterich Ensemble methods in machine learning J. Kittler, F. Roli, Multiple Classifier Systems, Lecture Notes in Computer Science vol. 1857 2000 Springer 1 15 URL http://dblp.uni-trier.de/db/conf/mcs/mcs2000.html#Dietterich00
    • (2000) Multiple Classifier Systems, Lecture Notes in Computer Science , vol.1857 , pp. 1-15
    • Dietterich, T.1
  • 48
    • 84857459505 scopus 로고    scopus 로고
    • Combining pattern classifiers: Methods and algorithms (Kuncheva, li; 2004)[book review]
    • L. Kuncheva Combining pattern classifiers: methods and algorithms (Kuncheva, li; 2004)[book review] IEEE Transactions on Neural Networks 18 3 2007 964
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.3 , pp. 964
    • Kuncheva, L.1
  • 54
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Machine Learning 26 2 1996 123 140
    • (1996) Machine Learning , vol.26 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 57
    • 0013372968 scopus 로고    scopus 로고
    • Uniform object generation for optimizing one-class classifiers
    • D. Tax, and R. Duin Uniform object generation for optimizing one-class classifiers The Journal of Machine Learning Research 2 2002 155 173
    • (2002) The Journal of Machine Learning Research , vol.2 , pp. 155-173
    • Tax, D.1    Duin, R.2
  • 60
    • 84863387880 scopus 로고    scopus 로고
    • University of California, Department of Information and Computer Science 55, Irvine, CA
    • C. Blake, C. Merz, Uci Repository of Machine Learning Databases, University of California, Department of Information and Computer Science 55, Irvine, CA http://www.ics.uci.edu/mlearn/mlrepository.html.
    • Uci Repository of Machine Learning Databases
    • Blake, C.1    Merz, C.2
  • 61
    • 0033931867 scopus 로고    scopus 로고
    • Assessing the accuracy of prediction algorithms for classification an overview
    • P. Baldi, S. Brunak, Y. Chauvin, C. Andersen, and H. Nielsen Assessing the accuracy of prediction algorithms for classification an overview Bioinformatics 16 5 2000 412 424
    • (2000) Bioinformatics , vol.16 , Issue.5 , pp. 412-424
    • Baldi, P.1    Brunak, S.2    Chauvin, Y.3    Andersen, C.4    Nielsen, H.5
  • 62
    • 0016772212 scopus 로고
    • Comparison of the predicted and observed secondary structure of t4 phage lysozyme
    • B. Matthews Comparison of the predicted and observed secondary structure of t4 phage lysozyme Biochimica et Biophysica Acta (BBA) - Protein Structure 405 2 1975 442 451
    • (1975) Biochimica et Biophysica Acta (BBA) - Protein Structure , vol.405 , Issue.2 , pp. 442-451
    • Matthews, B.1
  • 66
    • 0030145401 scopus 로고    scopus 로고
    • A note on comparing classifiers
    • R. Duin A note on comparing classifiers Pattern Recognition Letters 17 5 1996 529 536
    • (1996) Pattern Recognition Letters , vol.17 , Issue.5 , pp. 529-536
    • Duin, R.1
  • 67
    • 33745886270 scopus 로고    scopus 로고
    • Classifier technology and the illusion of progress
    • D. Hand Classifier technology and the illusion of progress Statistical Science 21 1 2006 1 14
    • (2006) Statistical Science , vol.21 , Issue.1 , pp. 1-14
    • Hand, D.1
  • 68
    • 49349117698 scopus 로고    scopus 로고
    • Mining supervised classification performance studies a meta-analytic investigation
    • 10.1007/s00357-008-9003-y
    • A. Jamain, and D.J. Hand Mining supervised classification performance studies a meta-analytic investigation Journal of Classification 25 2008 87 112 10.1007/s00357-008-9003-y
    • (2008) Journal of Classification , vol.25 , pp. 87-112
    • Jamain, A.1    Hand, D.J.2
  • 69
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar Statistical comparisons of classifiers over multiple data sets The Journal of Machine Learning Research 7 2006 1 30
    • (2006) The Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 70
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • T.G. Dietterich Approximate statistical tests for comparing supervised classification learning algorithms Neural Computation 10 7 1998 1895 1924
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1924
    • Dietterich, T.G.1
  • 71
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the generalization error
    • C. Nadeau, and Y. Bengio Inference for the generalization error Machine Learning 52 3 2003 239 281
    • (2003) Machine Learning , vol.52 , Issue.3 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 72
    • 0013058980 scopus 로고    scopus 로고
    • A comparison of ranking methods for classification algorithm selection
    • P. Brazdil, and C. Soares A comparison of ranking methods for classification algorithm selection Machine Learning ECML 2000 2000 63 75
    • (2000) Machine Learning ECML , vol.2000 , pp. 63-75
    • Brazdil, P.1    Soares, C.2
  • 73
    • 10944259095 scopus 로고    scopus 로고
    • Using permutations instead of Student's t distribution for p-values in paired-difference algorithm comparisons
    • IEEE
    • J. Menke, T. Martinez, Using permutations instead of Student's t distribution for p-values in paired-difference algorithm comparisons, in: 2004 IEEE International Joint Conference on Neural Networks, Proceedings, vol. 2, IEEE, 2004, pp. 1331-1335.
    • (2004) 2004 IEEE International Joint Conference on Neural Networks, Proceedings , vol.2 , pp. 1331-1335
    • Menke, J.1    Martinez, T.2
  • 76
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • M. Friedman The use of ranks to avoid the assumption of normality implicit in the analysis of variance Journal of the American Statistical Association 32 200 1937 675 701
    • (1937) Journal of the American Statistical Association , vol.32 , Issue.200 , pp. 675-701
    • Friedman, M.1
  • 77
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • M. Friedman A comparison of alternative tests of significance for the problem of m rankings The Annals of Mathematical Statistics 11 1 1940 86 92
    • (1940) The Annals of Mathematical Statistics , vol.11 , Issue.1 , pp. 86-92
    • Friedman, M.1
  • 79
    • 84881061402 scopus 로고
    • Approximations of the Critical Region of the Friedman Statistic
    • Albuquerque, NM, USA; Texas Tech University, Lubbock, USA
    • R. Iman, J. Davenport, Approximations of the Critical Region of the Friedman Statistic, Technical Report, Sandia Labs., Albuquerque, NM, USA; Texas Tech University, Lubbock, USA, 1979.
    • (1979) Technical Report, Sandia Labs.
    • Iman, R.1    Davenport, J.2
  • 81
    • 80054764029 scopus 로고    scopus 로고
    • PRTools Version 3.0: A Matlab Toolbox for Pattern Recognition
    • Citeseer
    • R. Duin, PRTools Version 3.0: A Matlab Toolbox for Pattern Recognition, in: Proceedings of the SPIE, Citeseer, 2000.
    • (2000) Proceedings of the SPIE
    • Duin, R.1
  • 84
    • 0000904196 scopus 로고
    • Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies
    • K. Mardia Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies Sankhya The Indian Journal of Statistics, Series B 1974 115 128
    • (1974) Sankhya the Indian Journal of Statistics, Series B , pp. 115-128
    • Mardia, K.1
  • 85
    • 34547453389 scopus 로고    scopus 로고
    • Testing the assumption of multivariate normality
    • A. Von Eye, and G. Bogat Testing the assumption of multivariate normality Psychology Science 46 2004 243 258
    • (2004) Psychology Science , vol.46 , pp. 243-258
    • Von Eye, A.1    Bogat, G.2
  • 87
    • 66049116306 scopus 로고    scopus 로고
    • A generalized Shapiro-Wilk w statistic for testing high-dimensional normality
    • J. Liang, M.-L. Tang, and P.S. Chan A generalized Shapiro-Wilk w statistic for testing high-dimensional normality Computational Statistics & Data Analysis 53 11 2009 3883 3891
    • (2009) Computational Statistics & Data Analysis , vol.53 , Issue.11 , pp. 3883-3891
    • Liang, J.1    Tang, M.-L.2    Chan, P.S.3
  • 88
  • 90
    • 0031076920 scopus 로고    scopus 로고
    • Cluster-based probability model and its application to image and texture processing
    • K. Popat, and R.W. Picard Cluster-based probability model and its application to image and texture processing IEEE Transactions on Image Processing 6 2 1997 268 284
    • (1997) IEEE Transactions on Image Processing , vol.6 , Issue.2 , pp. 268-284
    • Popat, K.1    Picard, R.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.