메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1384-1389

Cluster indicator decomposition for efficient matrix factorization

Author keywords

[No Author keywords available]

Indexed keywords

ACCURATE PREDICTION; COMPUTATION RESOURCES; INTRINSIC STRUCTURES; KERNEL MACHINE; LOW RANK APPROXIMATIONS; LOW-RANK MATRIX APPROXIMATIONS; MATRIX FACTORIZATIONS;

EID: 84881075878     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.5591/978-1-57735-516-8/IJCAI11-234     Document Type: Conference Paper
Times cited : (3)

References (19)
  • 1
    • 31844446681 scopus 로고    scopus 로고
    • Predictive low-rank decomposition for kernel methods
    • Francis R. Bach and Michael I. Jordan. Predictive low-rank decomposition for kernel methods. In ICML, volume 119, pages 33-40, 2005.
    • (2005) ICML , vol.119 , pp. 33-40
    • Bach, F.R.1    Jordan, M.I.2
  • 2
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. L. Le Cun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings of IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Le Cun, Y.L.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 3
    • 33749575326 scopus 로고    scopus 로고
    • Orthogonal nonnegative matrix t-factorizations for clustering
    • ACM
    • Chris H. Q. Ding, Tao Li, Wei Peng, and Haesun Park. Orthogonal nonnegative matrix t-factorizations for clustering. In KDD, pages 126-135. ACM, 2006.
    • (2006) KDD , pp. 126-135
    • Ding, C.H.Q.1    Li, T.2    Peng, W.3    Park, H.4
  • 4
    • 0038416092 scopus 로고    scopus 로고
    • Pass efficient algorithm for large matrices
    • P. Drineas and R. Kannan. Pass efficient algorithm for large matrices. In SODA, pages 223-232, 2003.
    • (2003) SODA , pp. 223-232
    • Drineas, P.1    Kannan, R.2
  • 6
    • 20444476106 scopus 로고    scopus 로고
    • Fast monte-carlo algorithms for finding low-rank approximations
    • Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algorithms for finding low-rank approximations. J. ACM, 51(6):1025-1041, 2004.
    • (2004) J. ACM , vol.51 , Issue.6 , pp. 1025-1041
    • Frieze, A.1    Kannan, R.2    Vempala, S.3
  • 7
    • 77953225570 scopus 로고    scopus 로고
    • The dimensionality of scene appearance
    • Rahul Garg, Hao Du, Steven M. Seitz, and Noah Snavely. The dimensionality of scene appearance. ICCV, 2009.
    • (2009) ICCV
    • Garg, R.1    Du, H.2    Seitz, S.M.3    Snavely, N.4
  • 8
    • 0034850433 scopus 로고    scopus 로고
    • Multiple motion scene reconstruction from uncalibrated views
    • Mei Han and Takeo Kanade. Multiple motion scene reconstruction from uncalibrated views. ICCV, 16:163-170, 2001.
    • (2001) ICCV , vol.16 , pp. 163-170
    • Han, M.1    Kanade, T.2
  • 9
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects with nonnegative matrix factorization
    • D.D. Lee and H.S. Seung. Learning the parts of objects with nonnegative matrix factorization. Nature, 401:788-791, 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 10
    • 77951158151 scopus 로고    scopus 로고
    • Non-negative Laplacian Embedding
    • D. Luo, C. Ding, H. Huang, and T. Li. Non-negative Laplacian Embedding. In 2009 ICDM, pages 337-346, 2009.
    • (2009) 2009 ICDM , pp. 337-346
    • Luo, D.1    Ding, C.2    Huang, H.3    Li, T.4
  • 11
    • 33745118277 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • P. Perona, R. Fergus, and F. F. Li. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In Workshop on Generative Model Based Vision, page 178, 2004.
    • (2004) Workshop on Generative Model Based Vision , pp. 178
    • Perona, P.1    Fergus, R.2    Li, F.F.3
  • 12
    • 0032045780 scopus 로고    scopus 로고
    • The FERET database and evaluation procedure for face-recognition algorithms
    • PII S026288569700070X
    • I. Philips, H. Wechsler, J. Huang, and P. Rauss. The feret database and evaluation procedure for face recognition algorithms. Image and Vision Computing, 16:295-306, 1998. (Pubitemid 128393579)
    • (1998) Image and Vision Computing , vol.16 , Issue.5 , pp. 295-306
    • Phillips, P.J.1    Wechsler, H.2    Huang, J.3    Rauss, P.J.4
  • 13
    • 1942516801 scopus 로고    scopus 로고
    • Weighted low-rank approximations
    • Nathan Srebro and Tommi Jaakkola. Weighted low-rank approximations. In ICML, pages 720-727, 2003.
    • (2003) ICML , pp. 720-727
    • Srebro, N.1    Jaakkola, T.2
  • 15
    • 0026384289 scopus 로고
    • Face recognition using eigenfaces
    • Matthew A. Turk and Alex P. Pentland. Face recognition using eigenfaces. CVPR, 1991.
    • (1991) CVPR
    • Turk, M.A.1    Pentland, A.P.2
  • 16
    • 0035440673 scopus 로고    scopus 로고
    • SIMPLIcity: Semantics-sensitive integrated matching for picture LIbraries
    • James Ze Wang, Jia Li, and Gio Wiederhold. SIMPLIcity: Semantics-sensitive integrated matching for picture LIbraries. IEEE Trans. Pattern Anal. Mach. Intell, 23(9):947-963, 2001.
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell , vol.23 , Issue.9 , pp. 947-963
    • Wang, J.Z.1    Li, J.2    Wiederhold, G.3
  • 18
    • 56449087564 scopus 로고    scopus 로고
    • Improved nyström low-rank approximation and error analysis
    • Kai Zhang, Ivor W. Tsang, and James T. Kwok. Improved nyström low-rank approximation and error analysis. ICML, pages 1232-1239, 2008.
    • (2008) ICML , pp. 1232-1239
    • Zhang, K.1    Tsang, I.W.2    Kwok, J.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.