메뉴 건너뛰기




Volumn 255, Issue 8, 2013, Pages 2340-2362

Elliptic problems involving the fractional Laplacian in RN

Author keywords

Existence; Fractional Sobolev spaces; Variational methods

Indexed keywords


EID: 84881048736     PISSN: 00220396     EISSN: 10902732     Source Type: Journal    
DOI: 10.1016/j.jde.2013.06.016     Document Type: Article
Times cited : (249)

References (33)
  • 1
    • 0003362526 scopus 로고
    • Sobolev Spaces
    • Academic Press, New York, London
    • Adams R.A. Sobolev Spaces. Pure Appl. Math. 1975, vol. 65. Academic Press, New York, London, xviii+268 pp.
    • (1975) Pure Appl. Math. , vol.65
    • Adams, R.A.1
  • 2
    • 0030579036 scopus 로고    scopus 로고
    • Elliptic problems with nonlinearities indefinite in sign
    • Alama S., Tarantello G. Elliptic problems with nonlinearities indefinite in sign. J. Funct. Anal. 1996, 141:159-215.
    • (1996) J. Funct. Anal. , vol.141 , pp. 159-215
    • Alama, S.1    Tarantello, G.2
  • 3
    • 0000049245 scopus 로고
    • Combined effects of concave and convex nonlinearities in some elliptic problems
    • Ambrosetti A., Brezis H., Cerami G. Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 1994, 122:519-543.
    • (1994) J. Funct. Anal. , vol.122 , pp. 519-543
    • Ambrosetti, A.1    Brezis, H.2    Cerami, G.3
  • 4
    • 84878419492 scopus 로고    scopus 로고
    • Existence of entire solutions for a class of quasilinear elliptic equations
    • Autuori G., Pucci P. Existence of entire solutions for a class of quasilinear elliptic equations. NoDEA Nonlinear Differential Equations Appl. 2013, 20:977-1009.
    • (2013) NoDEA Nonlinear Differential Equations Appl. , vol.20 , pp. 977-1009
    • Autuori, G.1    Pucci, P.2
  • 6
    • 0004106059 scopus 로고
    • Nonlinearity and Functional Analysis: Lectures on Nonlinear Problems in Mathematical Analysis
    • Academic Press, New York, London
    • Berger M.S. Nonlinearity and Functional Analysis: Lectures on Nonlinear Problems in Mathematical Analysis. Pure Appl. Math. 1977, Academic Press, New York, London, xix+417 pp.
    • (1977) Pure Appl. Math.
    • Berger, M.S.1
  • 7
    • 0036433741 scopus 로고    scopus 로고
    • s,p when s↑1 and applications
    • Dedicated to the memory of Thomas H. Wolff
    • s,p when s↑1 and applications. J. Anal. Math. 2002, 87:77-101. Dedicated to the memory of Thomas H. Wolff.
    • (2002) J. Anal. Math. , vol.87 , pp. 77-101
    • Bourgain, J.1    Brezis, H.2    Mironescu, P.3
  • 9
    • 79959566348 scopus 로고    scopus 로고
    • Functional Analysis, Sobolev Spaces and Partial Differential Equations
    • Springer, New York
    • Brezis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext 2011, Springer, New York, xiv+599 pp.
    • (2011) Universitext
    • Brezis, H.1
  • 11
    • 85027944204 scopus 로고    scopus 로고
    • Nonlinear porous medium flow with fractional potential pressure
    • Caffarelli L., Vazquez J.L. Nonlinear porous medium flow with fractional potential pressure. Arch. Ration. Mech. Anal. 2011, 202:537-565.
    • (2011) Arch. Ration. Mech. Anal. , vol.202 , pp. 537-565
    • Caffarelli, L.1    Vazquez, J.L.2
  • 13
    • 84872730517 scopus 로고    scopus 로고
    • Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity
    • Chang X., Wang Z.-Q. Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity 2013, 26:479-494.
    • (2013) Nonlinearity , vol.26 , pp. 479-494
    • Chang, X.1    Wang, Z.-Q.2
  • 14
    • 84860494475 scopus 로고    scopus 로고
    • Bound state for the fractional Schrödinger equation with unbounded potential
    • Cheng M. Bound state for the fractional Schrödinger equation with unbounded potential. J. Math. Phys. 2012, 53:043507. 7 pp.
    • (2012) J. Math. Phys. , vol.53
    • Cheng, M.1
  • 15
    • 0038706295 scopus 로고    scopus 로고
    • Local superlinearity and sublinearity for indefinite semilinear elliptic problems
    • De Figueiredo D.G., Gossez J.-P., Ubilla P. Local superlinearity and sublinearity for indefinite semilinear elliptic problems. J. Funct. Anal. 2003, 199:452-467.
    • (2003) J. Funct. Anal. , vol.199 , pp. 452-467
    • De Figueiredo, D.G.1    Gossez, J.-P.2    Ubilla, P.3
  • 16
    • 67349263426 scopus 로고    scopus 로고
    • Local "superlinearity" and "sublinearity" for the p-Laplacian
    • De Figueiredo D.G., Gossez J.-P., Ubilla P. Local "superlinearity" and "sublinearity" for the p-Laplacian. J. Funct. Anal. 2009, 257:721-752.
    • (2009) J. Funct. Anal. , vol.257 , pp. 721-752
    • De Figueiredo, D.G.1    Gossez, J.-P.2    Ubilla, P.3
  • 17
    • 84865832607 scopus 로고    scopus 로고
    • Comparison and regularity results for the fractional Laplacian via symmetrization methods
    • Di Blasio G., Volzone B. Comparison and regularity results for the fractional Laplacian via symmetrization methods. J. Differential Equations 2012, 253:2593-2615.
    • (2012) J. Differential Equations , vol.253 , pp. 2593-2615
    • Di Blasio, G.1    Volzone, B.2
  • 18
    • 84863469913 scopus 로고    scopus 로고
    • Hitchhiker's guide to the fractional Sobolev spaces
    • Di Nezza E., Palatucci G., Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. Math. 2012, 136:521-573.
    • (2012) Bull. Sci. Math. , vol.136 , pp. 521-573
    • Di Nezza, E.1    Palatucci, G.2    Valdinoci, E.3
  • 20
    • 84872735188 scopus 로고    scopus 로고
    • Existence and symmetry results for a Schödinger type problem involving the fractional Laplacian
    • Dipierro S., Palatucci G., Valdinoci E. Existence and symmetry results for a Schödinger type problem involving the fractional Laplacian. Matematiche 2013, 68:201-216.
    • (2013) Matematiche , vol.68 , pp. 201-216
    • Dipierro, S.1    Palatucci, G.2    Valdinoci, E.3
  • 21
    • 84878402878 scopus 로고
    • The mountain pass theorem and some applications
    • Presses Univ. Montréal, Montreal, QC, Minimax Results of Lusternik-Schnirelman Type and Applications
    • Ekeland I. The mountain pass theorem and some applications. Sém. Math. Sup. 1989, vol. 107:9-34. Presses Univ. Montréal, Montreal, QC.
    • (1989) Sém. Math. Sup. , vol.107 , pp. 9-34
    • Ekeland, I.1
  • 22
    • 85012488097 scopus 로고    scopus 로고
    • Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian
    • Felmer P., Quaas A., Tan J. Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. Roy. Soc. Edinburgh Sect. A 2012, 142:1237-1262.
    • (2012) Proc. Roy. Soc. Edinburgh Sect. A , vol.142 , pp. 1237-1262
    • Felmer, P.1    Quaas, A.2    Tan, J.3
  • 23
    • 78349306348 scopus 로고    scopus 로고
    • New competition phenomena in Dirichlet problems
    • Kristály A., Moroşanu G. New competition phenomena in Dirichlet problems. J. Math. Pures Appl. 2010, 94:555-570.
    • (2010) J. Math. Pures Appl. , vol.94 , pp. 555-570
    • Kristály, A.1    Moroşanu, G.2
  • 24
    • 79960456533 scopus 로고    scopus 로고
    • Compactly supported solutions for a semilinear elliptic problem in Rn with sign-changing function and non-Lipschitz nonlinearity
    • Lu Q. Compactly supported solutions for a semilinear elliptic problem in Rn with sign-changing function and non-Lipschitz nonlinearity. Proc. Roy. Soc. Edinburgh Sect. A 2011, 141:127-154.
    • (2011) Proc. Roy. Soc. Edinburgh Sect. A , vol.141 , pp. 127-154
    • Lu, Q.1
  • 25
    • 0037058485 scopus 로고    scopus 로고
    • On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces
    • Maz'ya V., Shaposhnikova T. On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces. J. Funct. Anal. 2002, 195:230-238.
    • (2002) J. Funct. Anal. , vol.195 , pp. 230-238
    • Maz'ya, V.1    Shaposhnikova, T.2
  • 26
    • 84884499334 scopus 로고    scopus 로고
    • Combined effects in quasilinear elliptic problems with lack of compactness
    • Special Volume dedicated to the memory of Prof. G. Prodi
    • Pucci P., Rǎdulescu V. Combined effects in quasilinear elliptic problems with lack of compactness. Rend. Lincei Mat. Appl. 2011, 22:189-205. Special Volume dedicated to the memory of Prof. G. Prodi.
    • (2011) Rend. Lincei Mat. Appl. , vol.22 , pp. 189-205
    • Pucci, P.1    Rǎdulescu, V.2
  • 27
    • 84875898832 scopus 로고    scopus 로고
    • Ground state solutions for nonlinear fractional Schrödinger equations in RN
    • Secchi S. Ground state solutions for nonlinear fractional Schrödinger equations in RN. J. Math. Phys. 2013, 54:031501. 17 pp.
    • (2013) J. Math. Phys. , vol.54
    • Secchi, S.1
  • 29
    • 84856270145 scopus 로고    scopus 로고
    • Mountain pass solutions for non-local elliptic operators
    • Servadei R., Valdinoci E. Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 2012, 389:887-898.
    • (2012) J. Math. Anal. Appl. , vol.389 , pp. 887-898
    • Servadei, R.1    Valdinoci, E.2
  • 30
    • 33751514593 scopus 로고    scopus 로고
    • Regularity of the obstacle problem for a fractional power of the Laplace operator
    • Silvestre L. Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 2007, 60:67-112.
    • (2007) Comm. Pure Appl. Math. , vol.60 , pp. 67-112
    • Silvestre, L.1
  • 31
    • 0003201639 scopus 로고
    • Singular Integrals and Differentiability Properties of Functions
    • Princeton Univ. Press, Princeton
    • Stein E.M. Singular Integrals and Differentiability Properties of Functions. Princeton Math. Ser. 1970, vol. 30. Princeton Univ. Press, Princeton, xiv+290 pp.
    • (1970) Princeton Math. Ser. , vol.30
    • Stein, E.M.1
  • 32
    • 84655176668 scopus 로고    scopus 로고
    • Nonlinear fractional field equations
    • Tan J., Wang Y., Yang J. Nonlinear fractional field equations. Nonlinear Anal. 2012, 75:2098-2110.
    • (2012) Nonlinear Anal. , vol.75 , pp. 2098-2110
    • Tan, J.1    Wang, Y.2    Yang, J.3
  • 33
    • 80655147001 scopus 로고    scopus 로고
    • The Nehari manifold for elliptic equation involving the square root of the Laplacian
    • Yu X. The Nehari manifold for elliptic equation involving the square root of the Laplacian. J. Differential Equations 2012, 252:1283-1308.
    • (2012) J. Differential Equations , vol.252 , pp. 1283-1308
    • Yu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.