메뉴 건너뛰기




Volumn 21, Issue 8, 2013, Pages 421-429

Viral evasion mechanisms of early antiviral responses involving regulation of ubiquitin pathways

Author keywords

Antiviral; Evasion of innate immunity; Restriction factors; Ubiquitin system

Indexed keywords

APOLIPOPROTEIN B MESSENGER RNA EDITING ENZYME CATALYTIC POLYPEPTIDE; CYTOKINE; HYDROLASE; IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; INTERFERON REGULATORY FACTOR 3; RETINOIC ACID INDUCIBLE PROTEIN I; STAT PROTEIN; TUMOR NECROSIS FACTOR RECEPTOR ASSOCIATED FACTOR 3; TUMOR NECROSIS FACTOR RECEPTOR ASSOCIATED FACTOR 6; UBIQUITIN; UBIQUITIN PROTEIN LIGASE E3; UNCLASSIFIED DRUG; VIRUS PROTEIN;

EID: 84881030086     PISSN: 0966842X     EISSN: 18784380     Source Type: Journal    
DOI: 10.1016/j.tim.2013.06.006     Document Type: Review
Times cited : (58)

References (105)
  • 1
    • 84861670735 scopus 로고    scopus 로고
    • The interferons and their receptors - distribution and regulation
    • de Weerd N.A., Nguyen T. The interferons and their receptors - distribution and regulation. Immunol. Cell Biol. 2012, 90:483-491.
    • (2012) Immunol. Cell Biol. , vol.90 , pp. 483-491
    • de Weerd, N.A.1    Nguyen, T.2
  • 2
    • 79959634861 scopus 로고    scopus 로고
    • Pattern recognition receptors and the innate immune response to viral infection
    • Thompson M.R., et al. Pattern recognition receptors and the innate immune response to viral infection. Viruses 2011, 3:920-940.
    • (2011) Viruses , vol.3 , pp. 920-940
    • Thompson, M.R.1
  • 3
    • 84869885962 scopus 로고    scopus 로고
    • Regulation of the innate immune system by ubiquitin and ubiquitin-like modifiers
    • Oudshoorn D., et al. Regulation of the innate immune system by ubiquitin and ubiquitin-like modifiers. Cytokine Growth Factor Rev. 2012, 23:273-282.
    • (2012) Cytokine Growth Factor Rev. , vol.23 , pp. 273-282
    • Oudshoorn, D.1
  • 4
    • 84858739354 scopus 로고    scopus 로고
    • Regulation of NF-kappaB by ubiquitination and degradation of the IkappaBs
    • Kanarek N., Ben-Neriah Y. Regulation of NF-kappaB by ubiquitination and degradation of the IkappaBs. Immunol. Rev. 2012, 246:77-94.
    • (2012) Immunol. Rev. , vol.246 , pp. 77-94
    • Kanarek, N.1    Ben-Neriah, Y.2
  • 5
    • 77955413296 scopus 로고    scopus 로고
    • Viral tricks to grid-lock the type I interferon system
    • Versteeg G.A., Garcia-Sastre A. Viral tricks to grid-lock the type I interferon system. Curr. Opin. Microbiol. 2010, 13:508-516.
    • (2010) Curr. Opin. Microbiol. , vol.13 , pp. 508-516
    • Versteeg, G.A.1    Garcia-Sastre, A.2
  • 6
    • 84873304007 scopus 로고    scopus 로고
    • Recent advances in understanding viral evasion of type I interferon
    • Taylor K.E., Mossman K.L. Recent advances in understanding viral evasion of type I interferon. Immunology 2013, 138:190-197.
    • (2013) Immunology , vol.138 , pp. 190-197
    • Taylor, K.E.1    Mossman, K.L.2
  • 7
    • 84860427832 scopus 로고    scopus 로고
    • Ubiquitin and its binding domains
    • Randles L., Walters K.J. Ubiquitin and its binding domains. Front. Biosci. 2012, 17:2140-2157.
    • (2012) Front. Biosci. , vol.17 , pp. 2140-2157
    • Randles, L.1    Walters, K.J.2
  • 8
    • 82955162702 scopus 로고    scopus 로고
    • Reading the ubiquitin postal code
    • Trempe J.F. Reading the ubiquitin postal code. Curr. Opin. Struct. Biol. 2011, 21:792-801.
    • (2011) Curr. Opin. Struct. Biol. , vol.21 , pp. 792-801
    • Trempe, J.F.1
  • 9
    • 77951708374 scopus 로고    scopus 로고
    • Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity
    • Zeng W., et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 2010, 141:315-330.
    • (2010) Cell , vol.141 , pp. 315-330
    • Zeng, W.1
  • 10
    • 77950410150 scopus 로고    scopus 로고
    • A capsid-encoded PPxY-motif facilitates adenovirus entry
    • Wodrich H., et al. A capsid-encoded PPxY-motif facilitates adenovirus entry. PLoS Pathog. 2010, 6:e1000808.
    • (2010) PLoS Pathog. , vol.6
    • Wodrich, H.1
  • 11
    • 84874504652 scopus 로고    scopus 로고
    • Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells
    • van Kasteren P.B., et al. Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E838-E847.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110
    • van Kasteren, P.B.1
  • 12
    • 84856844697 scopus 로고    scopus 로고
    • Arterivirus and nairovirus ovarian tumor domain-containing Deubiquitinases target activated RIG-I to control innate immune signaling
    • van Kasteren P.B., et al. Arterivirus and nairovirus ovarian tumor domain-containing Deubiquitinases target activated RIG-I to control innate immune signaling. J. Virol. 2012, 86:773-785.
    • (2012) J. Virol. , vol.86 , pp. 773-785
    • van Kasteren, P.B.1
  • 13
    • 36749007273 scopus 로고    scopus 로고
    • Ovarian tumor domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses
    • Frias-Staheli N., et al. Ovarian tumor domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses. Cell Host Microbe 2007, 2:404-416.
    • (2007) Cell Host Microbe , vol.2 , pp. 404-416
    • Frias-Staheli, N.1
  • 14
    • 55549102621 scopus 로고    scopus 로고
    • PLP2, a potent deubiquitinase from murine hepatitis virus, strongly inhibits cellular type I interferon production
    • Zheng D., et al. PLP2, a potent deubiquitinase from murine hepatitis virus, strongly inhibits cellular type I interferon production. Cell Res. 2008, 18:1105-1113.
    • (2008) Cell Res. , vol.18 , pp. 1105-1113
    • Zheng, D.1
  • 15
    • 84875514442 scopus 로고    scopus 로고
    • Epstein-Barr virus deubiquitinase downregulates TRAF6-mediated NF-kappaB signaling during productive replication
    • Saito S., et al. Epstein-Barr virus deubiquitinase downregulates TRAF6-mediated NF-kappaB signaling during productive replication. J. Virol. 2013, 87:4060-4070.
    • (2013) J. Virol. , vol.87 , pp. 4060-4070
    • Saito, S.1
  • 16
    • 80055007460 scopus 로고    scopus 로고
    • Inhibition of RIG-I-mediated signaling by Kaposi's sarcoma-associated herpesvirus-encoded deubiquitinase ORF64
    • Inn K.S., et al. Inhibition of RIG-I-mediated signaling by Kaposi's sarcoma-associated herpesvirus-encoded deubiquitinase ORF64. J. Virol. 2011, 85:10899-10904.
    • (2011) J. Virol. , vol.85 , pp. 10899-10904
    • Inn, K.S.1
  • 17
    • 79952837091 scopus 로고    scopus 로고
    • The leader proteinase of foot-and-mouth disease virus negatively regulates the type I interferon pathway by acting as a viral deubiquitinase
    • Wang D., et al. The leader proteinase of foot-and-mouth disease virus negatively regulates the type I interferon pathway by acting as a viral deubiquitinase. J. Virol. 2011, 85:3758-3766.
    • (2011) J. Virol. , vol.85 , pp. 3758-3766
    • Wang, D.1
  • 18
    • 65549164536 scopus 로고    scopus 로고
    • Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I
    • Gack M.U., et al. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 2009, 5:439-449.
    • (2009) Cell Host Microbe , vol.5 , pp. 439-449
    • Gack, M.U.1
  • 19
    • 84870820660 scopus 로고    scopus 로고
    • Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein
    • Rajsbaum R., et al. Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein. PLoS Pathog. 2012, 8:e1003059.
    • (2012) PLoS Pathog. , vol.8
    • Rajsbaum, R.1
  • 20
    • 77950539082 scopus 로고    scopus 로고
    • Association of RIG-I with innate immunity of ducks to influenza
    • Barber M.R., et al. Association of RIG-I with innate immunity of ducks to influenza. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:5913-5918.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 5913-5918
    • Barber, M.R.1
  • 21
    • 84866740475 scopus 로고    scopus 로고
    • Evolutionary conflicts between viruses and restriction factors shape immunity
    • Duggal N.K., Emerman M. Evolutionary conflicts between viruses and restriction factors shape immunity. Nat. Rev. Immunol. 2012, 12:687-695.
    • (2012) Nat. Rev. Immunol. , vol.12 , pp. 687-695
    • Duggal, N.K.1    Emerman, M.2
  • 22
    • 3442876111 scopus 로고    scopus 로고
    • APOBEC-mediated editing of viral RNA
    • Bishop K.N., et al. APOBEC-mediated editing of viral RNA. Science 2004, 305:645.
    • (2004) Science , vol.305 , pp. 645
    • Bishop, K.N.1
  • 23
    • 84870335313 scopus 로고    scopus 로고
    • The restriction factors of human immunodeficiency virus
    • Harris R.S., et al. The restriction factors of human immunodeficiency virus. J. Biol. Chem. 2012, 287:40875-40883.
    • (2012) J. Biol. Chem. , vol.287 , pp. 40875-40883
    • Harris, R.S.1
  • 24
    • 0242578406 scopus 로고    scopus 로고
    • Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex
    • Yu X., et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 2003, 302:1056-1060.
    • (2003) Science , vol.302 , pp. 1056-1060
    • Yu, X.1
  • 25
    • 84859482628 scopus 로고    scopus 로고
    • HIV/simian immunodeficiency virus (SIV) accessory virulence factor Vpx loads the host cell restriction factor SAMHD1 onto the E3 ubiquitin ligase complex CRL4DCAF1
    • Ahn J., et al. HIV/simian immunodeficiency virus (SIV) accessory virulence factor Vpx loads the host cell restriction factor SAMHD1 onto the E3 ubiquitin ligase complex CRL4DCAF1. J. Biol. Chem. 2012, 287:12550-12558.
    • (2012) J. Biol. Chem. , vol.287 , pp. 12550-12558
    • Ahn, J.1
  • 26
    • 84862777555 scopus 로고    scopus 로고
    • SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates
    • Lahouassa H., et al. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat. Immunol. 2012, 13:223-228.
    • (2012) Nat. Immunol. , vol.13 , pp. 223-228
    • Lahouassa, H.1
  • 27
    • 84871648210 scopus 로고    scopus 로고
    • BST-2/tetherin: structural biology, viral antagonism, and immunobiology of a potent host antiviral factor
    • Swiecki M., et al. BST-2/tetherin: structural biology, viral antagonism, and immunobiology of a potent host antiviral factor. Mol. Immunol. 2013, 54:132-139.
    • (2013) Mol. Immunol. , vol.54 , pp. 132-139
    • Swiecki, M.1
  • 28
    • 67650507029 scopus 로고    scopus 로고
    • Regulation of TLR7/9 responses in plasmacytoid dendritic cells by BST2 and ILT7 receptor interaction
    • Cao W., et al. Regulation of TLR7/9 responses in plasmacytoid dendritic cells by BST2 and ILT7 receptor interaction. J. Exp. Med. 2009, 206:1603-1614.
    • (2009) J. Exp. Med. , vol.206 , pp. 1603-1614
    • Cao, W.1
  • 29
    • 67249157032 scopus 로고    scopus 로고
    • Vpu antagonizes BST-2-mediated restriction of HIV-1 release via beta-TrCP and endo-lysosomal trafficking
    • Mitchell R.S., et al. Vpu antagonizes BST-2-mediated restriction of HIV-1 release via beta-TrCP and endo-lysosomal trafficking. PLoS Pathog. 2009, 5:e1000450.
    • (2009) PLoS Pathog. , vol.5
    • Mitchell, R.S.1
  • 30
    • 67749095196 scopus 로고    scopus 로고
    • Vpu directs the degradation of the human immunodeficiency virus restriction factor BST-2/Tetherin via a βTrCP-dependent mechanism
    • Douglas J.L., et al. Vpu directs the degradation of the human immunodeficiency virus restriction factor BST-2/Tetherin via a βTrCP-dependent mechanism. J. Virol. 2009, 83:7931-7947.
    • (2009) J. Virol. , vol.83 , pp. 7931-7947
    • Douglas, J.L.1
  • 31
    • 67249114758 scopus 로고    scopus 로고
    • Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2
    • Jia B., et al. Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2. PLoS Pathog. 2009, 5:e1000429.
    • (2009) PLoS Pathog. , vol.5
    • Jia, B.1
  • 32
    • 77953044868 scopus 로고    scopus 로고
    • HIV-1 Vpu and HIV-2 Env counteract BST-2/tetherin by sequestration in a perinuclear compartment
    • Hauser H., et al. HIV-1 Vpu and HIV-2 Env counteract BST-2/tetherin by sequestration in a perinuclear compartment. Retrovirology 2010, 7:51.
    • (2010) Retrovirology , vol.7 , pp. 51
    • Hauser, H.1
  • 33
    • 62449106199 scopus 로고    scopus 로고
    • Tetherin-mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein
    • Kaletsky R.L., et al. Tetherin-mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:2886-2891.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 2886-2891
    • Kaletsky, R.L.1
  • 34
    • 79952135872 scopus 로고    scopus 로고
    • Budding capability of the influenza virus neuraminidase can be modulated by tetherin
    • Yondola M.A., et al. Budding capability of the influenza virus neuraminidase can be modulated by tetherin. J. Virol. 2011, 85:2480-2491.
    • (2011) J. Virol. , vol.85 , pp. 2480-2491
    • Yondola, M.A.1
  • 35
    • 84862651351 scopus 로고    scopus 로고
    • Influenza virus partially counteracts restriction imposed by tetherin/BST-2
    • Mangeat B., et al. Influenza virus partially counteracts restriction imposed by tetherin/BST-2. J. Biol. Chem. 2012, 287:22015-22029.
    • (2012) J. Biol. Chem. , vol.287 , pp. 22015-22029
    • Mangeat, B.1
  • 36
    • 77957957665 scopus 로고    scopus 로고
    • In search of a function for BCLAF1
    • Sarras H., et al. In search of a function for BCLAF1. ScientificWorldJournal 2010, 10:1450-1461.
    • (2010) ScientificWorldJournal , vol.10 , pp. 1450-1461
    • Sarras, H.1
  • 37
    • 34848835708 scopus 로고    scopus 로고
    • Proteasome-dependent, ubiquitin-independent degradation of Daxx by the viral pp71 protein in human cytomegalovirus-infected cells
    • Hwang J., Kalejta R.F. Proteasome-dependent, ubiquitin-independent degradation of Daxx by the viral pp71 protein in human cytomegalovirus-infected cells. Virology 2007, 367:334-338.
    • (2007) Virology , vol.367 , pp. 334-338
    • Hwang, J.1    Kalejta, R.F.2
  • 38
    • 84856860908 scopus 로고    scopus 로고
    • Proteomic profiling of the human cytomegalovirus UL35 gene products reveals a role for UL35 in the DNA repair response
    • Salsman J., et al. Proteomic profiling of the human cytomegalovirus UL35 gene products reveals a role for UL35 in the DNA repair response. J. Virol. 2012, 86:806-820.
    • (2012) J. Virol. , vol.86 , pp. 806-820
    • Salsman, J.1
  • 39
    • 34548159689 scopus 로고    scopus 로고
    • Human cytomegalovirus gene expression is silenced by Daxx-mediated intrinsic immune defense in model latent infections established in vitro
    • Saffert R.T., Kalejta R.F. Human cytomegalovirus gene expression is silenced by Daxx-mediated intrinsic immune defense in model latent infections established in vitro. J. Virol. 2007, 81:9109-9120.
    • (2007) J. Virol. , vol.81 , pp. 9109-9120
    • Saffert, R.T.1    Kalejta, R.F.2
  • 40
    • 57349108706 scopus 로고    scopus 로고
    • Human cytomegalovirus protein pp71 displaces the chromatin-associated factor ATRX from nuclear domain 10 at early stages of infection
    • Lukashchuk V., et al. Human cytomegalovirus protein pp71 displaces the chromatin-associated factor ATRX from nuclear domain 10 at early stages of infection. J. Virol. 2008, 82:12543-12554.
    • (2008) J. Virol. , vol.82 , pp. 12543-12554
    • Lukashchuk, V.1
  • 41
    • 84875802583 scopus 로고    scopus 로고
    • Ubiquitin-independent proteasomal degradation of tumor suppressors by human cytomegalovirus pp71 requires the 19S regulatory particle
    • Winkler L.L., et al. Ubiquitin-independent proteasomal degradation of tumor suppressors by human cytomegalovirus pp71 requires the 19S regulatory particle. J. Virol. 2013, 87:4665-4671.
    • (2013) J. Virol. , vol.87 , pp. 4665-4671
    • Winkler, L.L.1
  • 42
    • 84862207254 scopus 로고    scopus 로고
    • BclAF1 restriction factor is neutralized by proteasomal degradation and microRNA repression during human cytomegalovirus infection
    • Lee S.H., et al. BclAF1 restriction factor is neutralized by proteasomal degradation and microRNA repression during human cytomegalovirus infection. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:9575-9580.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 9575-9580
    • Lee, S.H.1
  • 43
    • 77956859036 scopus 로고    scopus 로고
    • Inhibition of the type I interferon response in human dendritic cells by dengue virus infection requires a catalytically active NS2B3 complex
    • Rodriguez-Madoz J.R., et al. Inhibition of the type I interferon response in human dendritic cells by dengue virus infection requires a catalytically active NS2B3 complex. J. Virol. 2010, 84:9760-9774.
    • (2010) J. Virol. , vol.84 , pp. 9760-9774
    • Rodriguez-Madoz, J.R.1
  • 44
    • 84875994162 scopus 로고    scopus 로고
    • Dengue virus co-opts UBR4 to degrade STAT2 and antagonize type I interferon signaling
    • Morrison J., et al. Dengue virus co-opts UBR4 to degrade STAT2 and antagonize type I interferon signaling. PLoS Pathog. 2013, 9:e1003265.
    • (2013) PLoS Pathog. , vol.9
    • Morrison, J.1
  • 45
    • 84877790291 scopus 로고    scopus 로고
    • Hepatitis C virus targets the interferon-alpha JAK/STAT pathway by promoting proteasomal degradation in immune cells and hepatocytes
    • Stevenson N.J., et al. Hepatitis C virus targets the interferon-alpha JAK/STAT pathway by promoting proteasomal degradation in immune cells and hepatocytes. FEBS Lett. 2013, 587:1571-1578.
    • (2013) FEBS Lett. , vol.587 , pp. 1571-1578
    • Stevenson, N.J.1
  • 46
    • 54449100076 scopus 로고    scopus 로고
    • Human cytomegalovirus interferes with signal transducer and activator of transcription (STAT) 2 protein stability and tyrosine phosphorylation
    • Le V.T., et al. Human cytomegalovirus interferes with signal transducer and activator of transcription (STAT) 2 protein stability and tyrosine phosphorylation. J. Gen. Virol. 2008, 89:2416-2426.
    • (2008) J. Gen. Virol. , vol.89 , pp. 2416-2426
    • Le, V.T.1
  • 47
    • 84863866575 scopus 로고    scopus 로고
    • HSV-2 inhibits type-I interferon signaling via multiple complementary and compensatory STAT2-associated mechanisms
    • Kadeppagari R.K., et al. HSV-2 inhibits type-I interferon signaling via multiple complementary and compensatory STAT2-associated mechanisms. Virus Res. 2012, 167:273-284.
    • (2012) Virus Res. , vol.167 , pp. 273-284
    • Kadeppagari, R.K.1
  • 48
    • 70349239030 scopus 로고    scopus 로고
    • Paramyxovirus disruption of interferon signal transduction: STATus report
    • Ramachandran A., Horvath C.M. Paramyxovirus disruption of interferon signal transduction: STATus report. J. Interferon Cytokine Res. 2009, 29:531-537.
    • (2009) J. Interferon Cytokine Res. , vol.29 , pp. 531-537
    • Ramachandran, A.1    Horvath, C.M.2
  • 49
    • 33947399733 scopus 로고    scopus 로고
    • Respiratory syncytial virus NS1 protein degrades STAT2 by using the Elongin-Cullin E3 ligase
    • Elliott J., et al. Respiratory syncytial virus NS1 protein degrades STAT2 by using the Elongin-Cullin E3 ligase. J. Virol. 2007, 81:3428-3436.
    • (2007) J. Virol. , vol.81 , pp. 3428-3436
    • Elliott, J.1
  • 50
    • 1542288934 scopus 로고    scopus 로고
    • The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys
    • Stremlau M., et al. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 2004, 427:848-853.
    • (2004) Nature , vol.427 , pp. 848-853
    • Stremlau, M.1
  • 51
    • 79952582574 scopus 로고    scopus 로고
    • Recent insights into the mechanism and consequences of TRIM5alpha retroviral restriction
    • Sastri J., Campbell E.M. Recent insights into the mechanism and consequences of TRIM5alpha retroviral restriction. AIDS Res. Hum. Retroviruses 2011, 27:231-238.
    • (2011) AIDS Res. Hum. Retroviruses , vol.27 , pp. 231-238
    • Sastri, J.1    Campbell, E.M.2
  • 52
    • 79955377543 scopus 로고    scopus 로고
    • TRIM5 is an innate immune sensor for the retrovirus capsid lattice
    • Pertel T., et al. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 2011, 472:361-365.
    • (2011) Nature , vol.472 , pp. 361-365
    • Pertel, T.1
  • 53
    • 33749642641 scopus 로고    scopus 로고
    • Generation of simian-tropic HIV-1 by restriction factor evasion
    • Hatziioannou T., et al. Generation of simian-tropic HIV-1 by restriction factor evasion. Science 2006, 314:95.
    • (2006) Science , vol.314 , pp. 95
    • Hatziioannou, T.1
  • 54
    • 40349116307 scopus 로고    scopus 로고
    • TRIM E3 ligases interfere with early and late stages of the retroviral life cycle
    • Uchil P.D., et al. TRIM E3 ligases interfere with early and late stages of the retroviral life cycle. PLoS Pathog. 2008, 4:e16.
    • (2008) PLoS Pathog. , vol.4
    • Uchil, P.D.1
  • 55
    • 84855272528 scopus 로고    scopus 로고
    • Identification of a genomic reservoir for new TRIM genes in primate genomes
    • Han K., et al. Identification of a genomic reservoir for new TRIM genes in primate genomes. PLoS Genet. 2011, 7:e1002388.
    • (2011) PLoS Genet. , vol.7
    • Han, K.1
  • 56
    • 84874256730 scopus 로고    scopus 로고
    • The E3-ligase TRIM family of proteins regulates signaling pathways triggered by innate immune pattern-recognition receptors
    • Versteeg G.A., et al. The E3-ligase TRIM family of proteins regulates signaling pathways triggered by innate immune pattern-recognition receptors. Immunity 2013, 38:384-398.
    • (2013) Immunity , vol.38 , pp. 384-398
    • Versteeg, G.A.1
  • 57
    • 84871946152 scopus 로고    scopus 로고
    • TRIM protein-mediated regulation of inflammatory and innate immune signaling and its association with antiretroviral activity
    • Uchil P.D., et al. TRIM protein-mediated regulation of inflammatory and innate immune signaling and its association with antiretroviral activity. J. Virol. 2013, 87:257-272.
    • (2013) J. Virol. , vol.87 , pp. 257-272
    • Uchil, P.D.1
  • 58
    • 43649094723 scopus 로고    scopus 로고
    • Type I interferon-dependent and -independent expression of tripartite motif proteins in immune cells
    • Rajsbaum R., et al. Type I interferon-dependent and -independent expression of tripartite motif proteins in immune cells. Eur. J. Immunol. 2008, 38:619-630.
    • (2008) Eur. J. Immunol. , vol.38 , pp. 619-630
    • Rajsbaum, R.1
  • 59
    • 78651471295 scopus 로고    scopus 로고
    • Role of promyelocytic leukemia protein in host antiviral defense
    • Geoffroy M.C., Chelbi-Alix M.K. Role of promyelocytic leukemia protein in host antiviral defense. J. Interferon Cytokine Res. 2011, 31:145-158.
    • (2011) J. Interferon Cytokine Res. , vol.31 , pp. 145-158
    • Geoffroy, M.C.1    Chelbi-Alix, M.K.2
  • 60
    • 80053459914 scopus 로고    scopus 로고
    • A viral ubiquitin ligase has substrate preferential SUMO targeted ubiquitin ligase activity that counteracts intrinsic antiviral defence
    • Boutell C., et al. A viral ubiquitin ligase has substrate preferential SUMO targeted ubiquitin ligase activity that counteracts intrinsic antiviral defence. PLoS Pathog. 2011, 7:e1002245.
    • (2011) PLoS Pathog. , vol.7
    • Boutell, C.1
  • 61
    • 84869025216 scopus 로고    scopus 로고
    • Herpes simplex virus 1 ubiquitin ligase ICP0 interacts with PML isoform I and induces its SUMO-independent degradation
    • Cuchet-Lourenco D., et al. Herpes simplex virus 1 ubiquitin ligase ICP0 interacts with PML isoform I and induces its SUMO-independent degradation. J. Virol. 2012, 86:11209-11222.
    • (2012) J. Virol. , vol.86 , pp. 11209-11222
    • Cuchet-Lourenco, D.1
  • 62
    • 78049519070 scopus 로고    scopus 로고
    • SUMOylation promotes PML degradation during encephalomyocarditis virus infection
    • El McHichi B., et al. SUMOylation promotes PML degradation during encephalomyocarditis virus infection. J. Virol. 2010, 84:11634-11645.
    • (2010) J. Virol. , vol.84 , pp. 11634-11645
    • El McHichi, B.1
  • 63
    • 84872683702 scopus 로고    scopus 로고
    • The E3 ubiquitin ligase TRIM21 negatively regulates the innate immune response to intracellular double-stranded DNA
    • Zhang Z., et al. The E3 ubiquitin ligase TRIM21 negatively regulates the innate immune response to intracellular double-stranded DNA. Nat. Immunol. 2013, 14:172-178.
    • (2013) Nat. Immunol. , vol.14 , pp. 172-178
    • Zhang, Z.1
  • 64
    • 78650214109 scopus 로고    scopus 로고
    • The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA
    • Tsuchida T., et al. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 2010, 33:765-776.
    • (2010) Immunity , vol.33 , pp. 765-776
    • Tsuchida, T.1
  • 65
    • 84865270570 scopus 로고    scopus 로고
    • TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination
    • Zhang J., et al. TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination. J. Biol. Chem. 2012, 287:28646-28655.
    • (2012) J. Biol. Chem. , vol.287 , pp. 28646-28655
    • Zhang, J.1
  • 66
    • 64049092850 scopus 로고    scopus 로고
    • Identification of TRIM23 as a cofactor involved in the regulation of NF-kappaB by human cytomegalovirus
    • Poole E., et al. Identification of TRIM23 as a cofactor involved in the regulation of NF-kappaB by human cytomegalovirus. J. Virol. 2009, 83:3581-3590.
    • (2009) J. Virol. , vol.83 , pp. 3581-3590
    • Poole, E.1
  • 67
    • 77957677615 scopus 로고    scopus 로고
    • Polyubiquitin conjugation to NEMO by triparite motif protein 23 (TRIM23) is critical in antiviral defense
    • Arimoto K., et al. Polyubiquitin conjugation to NEMO by triparite motif protein 23 (TRIM23) is critical in antiviral defense. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:15856-15861.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 15856-15861
    • Arimoto, K.1
  • 68
    • 84866925345 scopus 로고    scopus 로고
    • Identification of alternatively translated Tetherin isoforms with differing antiviral and signaling activities
    • Cocka L.J., Bates P. Identification of alternatively translated Tetherin isoforms with differing antiviral and signaling activities. PLoS Pathog. 2012, 8:e1002931.
    • (2012) PLoS Pathog. , vol.8
    • Cocka, L.J.1    Bates, P.2
  • 69
    • 84869194198 scopus 로고    scopus 로고
    • Innate sensing of HIV-1 assembly by Tetherin induces NFkappaB-dependent proinflammatory responses
    • Galao R.P., et al. Innate sensing of HIV-1 assembly by Tetherin induces NFkappaB-dependent proinflammatory responses. Cell Host Microbe 2012, 12:633-644.
    • (2012) Cell Host Microbe , vol.12 , pp. 633-644
    • Galao, R.P.1
  • 70
    • 84873864091 scopus 로고    scopus 로고
    • Stimulation of NF-kappaB activity by the HIV restriction factor BST2
    • Tokarev A., et al. Stimulation of NF-kappaB activity by the HIV restriction factor BST2. J. Virol. 2013, 87:2046-2057.
    • (2013) J. Virol. , vol.87 , pp. 2046-2057
    • Tokarev, A.1
  • 71
    • 79959377900 scopus 로고    scopus 로고
    • IFIT1 is an antiviral protein that recognizes 5'-triphosphate RNA
    • Pichlmair A., et al. IFIT1 is an antiviral protein that recognizes 5'-triphosphate RNA. Nat. Immunol. 2011, 12:624-630.
    • (2011) Nat. Immunol. , vol.12 , pp. 624-630
    • Pichlmair, A.1
  • 72
    • 84871484827 scopus 로고    scopus 로고
    • The broad-spectrum antiviral functions of IFIT and IFITM proteins
    • Diamond M.S., Farzan M. The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat. Rev. Immunol. 2013, 13:46-57.
    • (2013) Nat. Rev. Immunol. , vol.13 , pp. 46-57
    • Diamond, M.S.1    Farzan, M.2
  • 73
    • 80052675864 scopus 로고    scopus 로고
    • IFN-induced TPR protein IFIT3 potentiates antiviral signaling by bridging MAVS and TBK1
    • Liu X.Y., et al. IFN-induced TPR protein IFIT3 potentiates antiviral signaling by bridging MAVS and TBK1. J. Immunol. 2011, 187:2559-2568.
    • (2011) J. Immunol. , vol.187 , pp. 2559-2568
    • Liu, X.Y.1
  • 74
    • 77957785465 scopus 로고    scopus 로고
    • Emerging role of ISG15 in antiviral immunity
    • Skaug B., Chen Z.J. Emerging role of ISG15 in antiviral immunity. Cell 2010, 143:187-190.
    • (2010) Cell , vol.143 , pp. 187-190
    • Skaug, B.1    Chen, Z.J.2
  • 75
    • 84856862707 scopus 로고    scopus 로고
    • Human pathogens and the host cell SUMOylation system
    • Wimmer P., et al. Human pathogens and the host cell SUMOylation system. J. Virol. 2012, 86:642-654.
    • (2012) J. Virol. , vol.86 , pp. 642-654
    • Wimmer, P.1
  • 77
    • 84875854073 scopus 로고    scopus 로고
    • Interferon-induced ISG15 pathway: an ongoing virus-host battle
    • Zhao C., et al. Interferon-induced ISG15 pathway: an ongoing virus-host battle. Trends Microbiol. 2013, 21:181-186.
    • (2013) Trends Microbiol. , vol.21 , pp. 181-186
    • Zhao, C.1
  • 78
    • 48249105524 scopus 로고    scopus 로고
    • Vaccinia virus E3 protein prevents the antiviral action of ISG15
    • Guerra S., et al. Vaccinia virus E3 protein prevents the antiviral action of ISG15. PLoS Pathog. 2008, 4:e1000096.
    • (2008) PLoS Pathog. , vol.4
    • Guerra, S.1
  • 79
    • 0035253852 scopus 로고    scopus 로고
    • Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein
    • Yuan W., Krug R.M. Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J. 2001, 20:362-371.
    • (2001) EMBO J. , vol.20 , pp. 362-371
    • Yuan, W.1    Krug, R.M.2
  • 80
    • 77951480439 scopus 로고    scopus 로고
    • Species-specific antagonism of host ISGylation by the influenza B virus NS1 protein
    • Versteeg G.A., et al. Species-specific antagonism of host ISGylation by the influenza B virus NS1 protein. J. Virol. 2010, 84:5423-5430.
    • (2010) J. Virol. , vol.84 , pp. 5423-5430
    • Versteeg, G.A.1
  • 81
    • 77950873763 scopus 로고    scopus 로고
    • Species specificity of the NS1 protein of influenza B virus: NS1 binds only human and non-human primate ubiquitin-like ISG15 proteins
    • Sridharan H., et al. Species specificity of the NS1 protein of influenza B virus: NS1 binds only human and non-human primate ubiquitin-like ISG15 proteins. J. Biol. Chem. 2010, 285:7852-7856.
    • (2010) J. Biol. Chem. , vol.285 , pp. 7852-7856
    • Sridharan, H.1
  • 82
    • 0346020435 scopus 로고    scopus 로고
    • The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress
    • Kawaguchi Y., et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 2003, 115:727-738.
    • (2003) Cell , vol.115 , pp. 727-738
    • Kawaguchi, Y.1
  • 83
    • 65549142204 scopus 로고    scopus 로고
    • A role for ubiquitin in selective autophagy
    • Kirkin V., et al. A role for ubiquitin in selective autophagy. Mol. Cell 2009, 34:259-269.
    • (2009) Mol. Cell , vol.34 , pp. 259-269
    • Kirkin, V.1
  • 84
    • 67650517556 scopus 로고    scopus 로고
    • NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets
    • Lamark T., et al. NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 2009, 8:1986-1990.
    • (2009) Cell Cycle , vol.8 , pp. 1986-1990
    • Lamark, T.1
  • 85
    • 36849089101 scopus 로고    scopus 로고
    • Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
    • Komatsu M., et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007, 131:1149-1163.
    • (2007) Cell , vol.131 , pp. 1149-1163
    • Komatsu, M.1
  • 86
    • 84881030026 scopus 로고    scopus 로고
    • Roles of autophagy in elimination of intracellular bacterial pathogens
    • Jo E.K., et al. Roles of autophagy in elimination of intracellular bacterial pathogens. Front. Immunol. 2013, 4:97.
    • (2013) Front. Immunol. , vol.4 , pp. 97
    • Jo, E.K.1
  • 87
    • 84856020006 scopus 로고    scopus 로고
    • Manipulation or capitulation: virus interactions with autophagy
    • Jordan T.X., Randall G. Manipulation or capitulation: virus interactions with autophagy. Microbes Infect. 2012, 14:126-139.
    • (2012) Microbes Infect. , vol.14 , pp. 126-139
    • Jordan, T.X.1    Randall, G.2
  • 88
    • 80052251448 scopus 로고    scopus 로고
    • Autophagy in the control and pathogenesis of viral infection
    • Yordy B., Iwasaki A. Autophagy in the control and pathogenesis of viral infection. Curr. Opin. Virol. 2011, 1:196-203.
    • (2011) Curr. Opin. Virol. , vol.1 , pp. 196-203
    • Yordy, B.1    Iwasaki, A.2
  • 89
    • 76249112828 scopus 로고    scopus 로고
    • Autophagy protects against Sindbis virus infection of the central nervous system
    • Orvedahl A., et al. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 2010, 7:115-127.
    • (2010) Cell Host Microbe , vol.7 , pp. 115-127
    • Orvedahl, A.1
  • 90
    • 34447643958 scopus 로고    scopus 로고
    • Toll-like receptor 4 is a sensor for autophagy associated with innate immunity
    • Xu Y., et al. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 2007, 27:135-144.
    • (2007) Immunity , vol.27 , pp. 135-144
    • Xu, Y.1
  • 91
    • 57749100267 scopus 로고    scopus 로고
    • MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages
    • Shi C.S., Kehrl J.H. MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J. Biol. Chem. 2008, 283:33175-33182.
    • (2008) J. Biol. Chem. , vol.283 , pp. 33175-33182
    • Shi, C.S.1    Kehrl, J.H.2
  • 92
    • 51049118332 scopus 로고    scopus 로고
    • The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications: beyond the usual suspects' review series
    • Geng J., Klionsky D.J. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep. 2008, 9:859-864.
    • (2008) EMBO Rep. , vol.9 , pp. 859-864
    • Geng, J.1    Klionsky, D.J.2
  • 93
    • 84860901212 scopus 로고    scopus 로고
    • Viral mediated redirection of NEMO/IKKgamma to autophagosomes curtails the inflammatory cascade
    • Fliss P.M., et al. Viral mediated redirection of NEMO/IKKgamma to autophagosomes curtails the inflammatory cascade. PLoS Pathog. 2012, 8:e1002517.
    • (2012) PLoS Pathog. , vol.8
    • Fliss, P.M.1
  • 94
    • 40449127353 scopus 로고    scopus 로고
    • Structural and biochemical bases for the inhibition of autophagy and apoptosis by viral BCL-2 of murine gamma-herpesvirus 68
    • Ku B., et al. Structural and biochemical bases for the inhibition of autophagy and apoptosis by viral BCL-2 of murine gamma-herpesvirus 68. PLoS Pathog. 2008, 4:e25.
    • (2008) PLoS Pathog. , vol.4
    • Ku, B.1
  • 95
    • 0035032723 scopus 로고    scopus 로고
    • Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network
    • Kihara A., et al. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep. 2001, 2:330-335.
    • (2001) EMBO Rep. , vol.2 , pp. 330-335
    • Kihara, A.1
  • 96
    • 67649585835 scopus 로고    scopus 로고
    • Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages
    • Kyei G.B., et al. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J. Cell Biol. 2009, 186:255-268.
    • (2009) J. Cell Biol. , vol.186 , pp. 255-268
    • Kyei, G.B.1
  • 97
    • 84873856403 scopus 로고    scopus 로고
    • Host cell autophagy modulates early stages of adenovirus infections in airway epithelial cells
    • Zeng X., Carlin C.R. Host cell autophagy modulates early stages of adenovirus infections in airway epithelial cells. J. Virol. 2013, 87:2307-2319.
    • (2013) J. Virol. , vol.87 , pp. 2307-2319
    • Zeng, X.1    Carlin, C.R.2
  • 98
    • 84873709314 scopus 로고    scopus 로고
    • Identification of a candidate therapeutic autophagy-inducing peptide
    • Shoji-Kawata S., et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 2013, 494:201-206.
    • (2013) Nature , vol.494 , pp. 201-206
    • Shoji-Kawata, S.1
  • 99
    • 84872198804 scopus 로고    scopus 로고
    • Japanese encephalitis virus activates autophagy as a viral immune evasion strategy
    • Jin R., et al. Japanese encephalitis virus activates autophagy as a viral immune evasion strategy. PLoS ONE 2013, 8:e52909.
    • (2013) PLoS ONE , vol.8
    • Jin, R.1
  • 100
    • 80055115107 scopus 로고    scopus 로고
    • Varicella-zoster virus immediate-early protein ORF61 abrogates the IRF3-mediated innate immune response through degradation of activated IRF3
    • Zhu H., et al. Varicella-zoster virus immediate-early protein ORF61 abrogates the IRF3-mediated innate immune response through degradation of activated IRF3. J. Virol. 2011, 85:11079-11089.
    • (2011) J. Virol. , vol.85 , pp. 11079-11089
    • Zhu, H.1
  • 101
    • 80052341054 scopus 로고    scopus 로고
    • Disruption of PML nuclear bodies is mediated by ORF61 SUMO-interacting motifs and required for varicella-zoster virus pathogenesis in skin
    • Wang L., et al. Disruption of PML nuclear bodies is mediated by ORF61 SUMO-interacting motifs and required for varicella-zoster virus pathogenesis in skin. PLoS Pathog. 2011, 7:e1002157.
    • (2011) PLoS Pathog. , vol.7
    • Wang, L.1
  • 102
    • 73549090361 scopus 로고    scopus 로고
    • Efficient internalization of MHC I requires lysine-11 and lysine-63 mixed linkage polyubiquitin chains
    • Boname J.M., et al. Efficient internalization of MHC I requires lysine-11 and lysine-63 mixed linkage polyubiquitin chains. Traffic 2011, 11:210-220.
    • (2011) Traffic , vol.11 , pp. 210-220
    • Boname, J.M.1
  • 103
    • 84874035038 scopus 로고    scopus 로고
    • Regulation of alphaherpesvirus infections by the ICP0 family of proteins
    • Boutell C., Everett R.D. Regulation of alphaherpesvirus infections by the ICP0 family of proteins. J. Gen. Virol. 2013, 94:465-481.
    • (2013) J. Gen. Virol. , vol.94 , pp. 465-481
    • Boutell, C.1    Everett, R.D.2
  • 104
    • 59849122098 scopus 로고    scopus 로고
    • Interplay between poxviruses and the cellular ubiquitin/ubiquitin-like pathways
    • Zhang L., et al. Interplay between poxviruses and the cellular ubiquitin/ubiquitin-like pathways. FEBS Lett. 2009, 583:607-614.
    • (2009) FEBS Lett. , vol.583 , pp. 607-614
    • Zhang, L.1
  • 105
    • 34249947558 scopus 로고    scopus 로고
    • Ubiquitination screen using protein microarrays for comprehensive identification of Rsp5 substrates in yeast
    • Gupta R., et al. Ubiquitination screen using protein microarrays for comprehensive identification of Rsp5 substrates in yeast. Mol. Syst. Biol. 2007, 3:116.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 116
    • Gupta, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.