메뉴 건너뛰기




Volumn , Issue , 2007, Pages 810-816

Improving embeddings by flexible exploitation of side information

Author keywords

[No Author keywords available]

Indexed keywords

DIMENSIONALITY REDUCTION; DISTANCE METRICS; EMBEDDING PROCESS; HIGH DIMENSIONAL DATA; LOW-DIMENSIONAL MANIFOLDS; NON-LINEAR TRANSFORMATIONS; SALIENT FEATURES; SIDE INFORMATION;

EID: 84880891566     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (22)

References (12)
  • 1
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • DOI 10.1162/089976603321780317
    • M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6):1373-1396, 2003. (Pubitemid 37049796)
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 5
    • 84864030708 scopus 로고    scopus 로고
    • Metric learning by collapsing classes
    • Amir Globerson and Sam Roweis. Metric learning by collapsing classes. In NIPS-2005, pages 451-458. 2006.
    • (2006) NIPS-2005 , pp. 451-458
    • Globerson, A.1    Roweis, S.2
  • 7
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • December
    • Sam Roweis and Lawrence Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, December 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 8
    • 0033296299 scopus 로고    scopus 로고
    • Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
    • J. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw., 11/12(1-4):625-653, 1999.
    • (1999) Optim. Methods Softw. , vol.11-12 , Issue.1-4 , pp. 625-653
    • Sturm, J.1
  • 9
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • DOI 10.1126/science.290.5500.2319
    • J. Tenenbaum, V. de Silva, and J. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290:2319-2323, 2000. (Pubitemid 32041577)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 10
    • 5044226695 scopus 로고    scopus 로고
    • Unsupervised learning of image manifolds by semidefinite programming
    • K. Q. Weinberger and L. K. Saul. Unsupervised learning of image manifolds by semidefinite programming. In CVPR-2004, volume II, pages 988-995, 2004.
    • (2004) CVPR-2004 , vol.2 , pp. 988-995
    • Weinberger, K.Q.1    Saul, L.K.2
  • 11
    • 33749257955 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • Kilian Weinberger, John Blitzer, and Lawrence Saul. Distance metric learning for large margin nearest neighbor classification. In NIPS-2005, pages 1475-1482. 2006.
    • (2006) NIPS-2005 , pp. 1475-1482
    • Weinberger, K.1    Blitzer, J.2    Saul, L.3
  • 12
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side-information
    • Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, and Stuart Russell. Distance metric learning with application to clustering with side-information. In NIPS-2002, pages 505-512. 2003.
    • (2003) NIPS-2002 , pp. 505-512
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.