-
1
-
-
84880767752
-
-
U.S. Congress Office Of Technology Assessment U.S. Government Printing Office, Washington, DC
-
U.S. Congress, Office of Technology Assessment. Miniaturization Technologies. OTA-TCT-514 (U.S. Government Printing Office, Washington, DC, 1991).
-
(1991)
Miniaturization Technologies. OTA-TCT-514
-
-
-
2
-
-
84862776787
-
A single atom transistor
-
Fuechsle, M. et al. A single atom transistor. Nat. Nanotech. 7, 242-246 (2012).
-
(2012)
Nat. Nanotech
, vol.7
, pp. 242-246
-
-
Fuechsle, M.1
-
3
-
-
84855861104
-
Bistability in atomic-scale antiferromagnets
-
Loth, S., Baumann, S., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Bistability in atomic-scale antiferromagnets. Science 335, 196-199 (2012).
-
(2012)
Science
, vol.335
, pp. 196-199
-
-
Loth, S.1
Baumann, S.2
Lutz, C.P.3
Eigler, D.M.4
Heinrich, A.J.5
-
6
-
-
0030243163
-
Electromigration: The time bomb in deep-submicronics
-
Li, P.-C. & Young, T. K. Electromigration: the time bomb in deep-submicron ICs. IEEE Spectrum 33, 75-78 (1996).
-
(1996)
IEEE Spectrum
, vol.33
, pp. 75-78
-
-
Li, P.-C.1
Young, T.K.2
-
7
-
-
0029327239
-
Electromigration in copper conductors
-
Lloyd, J. R. & Clement, J. J. Electromigration in copper conductors. Thin Solid Films 262, 135-141 (1996).
-
(1996)
Thin Solid Films
, vol.262
, pp. 135-141
-
-
Lloyd, J.R.1
Clement, J.J.2
-
8
-
-
0027589941
-
Electromigration characteristics of copper interconnects
-
Tao, J. & Cheung, N. W. Electromigration characteristics of copper interconnects. IEEE Electr. Device L. 14, 249-251 (1993).
-
(1993)
IEEE Electr. Device L.
, vol.14
, pp. 249-251
-
-
Tao, J.1
Cheung, N.W.2
-
10
-
-
49749201891
-
Current induced marker motion in gold wires
-
Huntington, H. B. & Grone, A. R. Current induced marker motion in gold wires. J. Phys. Chem. Solids 20, 76-87 (1961).
-
(1961)
J. Phys. Chem. Solids
, vol.20
, pp. 76-87
-
-
Huntington, H.B.1
Grone, A.R.2
-
11
-
-
17944383013
-
High-field electrical transport in single-wall carbon nanotubes
-
Yao, Z., Kane, C. L. & Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941-2944 (2000).
-
(2000)
Phys. Rev. Lett
, vol.84
, pp. 2941-2944
-
-
Yao, Z.1
Kane, C.L.2
Dekker, C.3
-
12
-
-
0035920684
-
Reliability and current carrying capacity of carbon nanotubes
-
Wei, B. Q., Vajtai, R. & Ajayan, P. M. Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79, 1172-1174 (2001).
-
(2001)
Appl. Phys. Lett
, vol.79
, pp. 1172-1174
-
-
Wei, B.Q.1
Vajtai, R.2
Ajayan, P.M.3
-
13
-
-
0035794576
-
Current saturation and electrical breakdown in multiwalled carbon nanotubes
-
Collins, P. G., Hersam, M., Arnold, M., Martel, R. & Avouris, P. h. Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 86, 3128-3131 (2001).
-
(2001)
Phys. Rev. Lett
, vol.86
, pp. 3128-3131
-
-
Collins, P.G.1
Hersam, M.2
Arnold, M.3
Martel, R.4
Avouris, P.H.5
-
14
-
-
0032511085
-
Carbon nanotube quantum resistors
-
Frank, S., Poncharal, P., Wang, Z. L. & de Heer, W. A. Carbon nanotube quantum resistors. Science 280, 1744-1746 (1998).
-
(1998)
Science
, vol.280
, pp. 1744-1746
-
-
Frank, S.1
Poncharal, P.2
Wang, Z.L.3
De Heer, W.A.4
-
15
-
-
1642528399
-
Electron-phonon scattering in metallic single-walled carbon nanotubes
-
Park et al. Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano. Lett. 4, 517-520 (2004).
-
(2004)
Nano. Lett
, vol.4
, pp. 517-520
-
-
Park1
-
16
-
-
33646248381
-
Compact physical models for multiwall carbonnanotube interconnects
-
Naeemi, A. & Meindl, J. D. Compact physical models for multiwall carbonnanotube interconnects. IEEE Electr. Device L. 27, 338-341 (2006).
-
(2006)
IEEE Electr. Device L.
, vol.27
, pp. 338-341
-
-
Naeemi, A.1
Meindl, J.D.2
-
17
-
-
84953659179
-
Diffusion in copper and copper alloys: Part 1. Volume and surface self-diffusion in copper
-
Butrymowicz, D. B., Manning, J. R. & Read, M. E. Diffusion in copper and copper alloys: Part 1. Volume and surface self-diffusion in copper. J. Phys. Chem. Ref. Data 2, 643-657 (1973).
-
(1973)
J. Phys. Chem. Ref. Data
, vol.2
, pp. 643-657
-
-
Butrymowicz, D.B.1
Manning, J.R.2
Read, M.E.3
-
19
-
-
0031194827
-
Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br
-
Lee, R. S., Kim, H. J., Fischer, J. E., Thess, A. & Smalley, R. E. Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature 388, 255-257 (1997).
-
(1997)
Nature
, vol.388
, pp. 255-257
-
-
Lee, R.S.1
Kim, H.J.2
Fischer, J.E.3
Thess, A.4
Smalley, R.E.5
-
20
-
-
0030126336
-
Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes
-
Dai, H., Wong, E. W. & Lieber, C. M. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 272, 523-526 (1996).
-
(1996)
Science
, vol.272
, pp. 523-526
-
-
Dai, H.1
Wong, E.W.2
Lieber, C.M.3
-
21
-
-
84872146189
-
Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity
-
Behabtu, N. et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339, 182-186 (2013).
-
(2013)
Science
, vol.339
, pp. 182-186
-
-
Behabtu, N.1
-
22
-
-
84880811583
-
-
US Government Printing Office. (US Government Printing Office, Washington DC
-
US Government Printing Office. Copper wire tables National Bureau of Standards Handbook 100 (US Government Printing Office, Washington DC, 1966).
-
(1966)
Copper Wire Tables National Bureau of Standards Handbook
, vol.100
-
-
-
23
-
-
43449138477
-
Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers
-
Hayamizu, Y. et al. Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers. Nat. Nanotech. 3, 289-294 (2008).
-
(2008)
Nat. Nanotech
, vol.3
, pp. 289-294
-
-
Hayamizu, Y.1
-
24
-
-
79955848609
-
A stretchable carbon nanotube strain sensor for humanmotion detection
-
Yamada, T. et al. A stretchable carbon nanotube strain sensor for humanmotion detection. Nat. Nanotech. 6, 296-301 (2011).
-
(2011)
Nat. Nanotech
, vol.6
, pp. 296-301
-
-
Yamada, T.1
-
25
-
-
1842617942
-
Electromigration in metals
-
Ho, P. S. & Kwok, T. Electromigration in metals. Rep. Prog. Phys. 52, 301-348 (1989).
-
(1989)
Rep. Prog. Phys
, vol.52
, pp. 301-348
-
-
Ho, P.S.1
Kwok, T.2
-
26
-
-
70349595219
-
Highly aligned scalable platinum decorated single-wall carbon nanotube arrays for nanoscale electrical interconnects
-
Kim, Y. L. et al. Highly aligned scalable platinum decorated single-wall carbon nanotube arrays for nanoscale electrical interconnects. ACS Nano. 3, 2818-2826 (2009).
-
(2009)
ACS Nano
, vol.3
, pp. 2818-2826
-
-
Kim, Y.L.1
-
27
-
-
0012679538
-
Electromigration failure
-
Lloyd, J. R. Electromigration failure. J. Appl. Phys. 69, 7601-7604 (1991).
-
(1991)
J. Appl. Phys
, vol.69
, pp. 7601-7604
-
-
Lloyd, J.R.1
-
28
-
-
0033222020
-
Copper metallization reliability
-
Lloyd, J. R., Clemens, J. & Snede, R. Copper metallization reliability. Microelectron. Reliab. 39, 1595-1602 (1999).
-
(1999)
Microelectron. Reliab
, vol.39
, pp. 1595-1602
-
-
Lloyd, J.R.1
Clemens, J.2
Snede, R.3
-
29
-
-
65349112131
-
An in-situ investigation of electromigration in Cu nanowires
-
Huang, Q., Lilley, C. M. & Divan, R. An in-situ investigation of electromigration in Cu nanowires. Nanotechnology 20, 075706 (2009).
-
(2009)
Nanotechnology
, vol.20
, pp. 075706
-
-
Huang, Q.1
Lilley, C.M.2
Divan, R.3
-
30
-
-
1842482487
-
Can we achieve ultra-low resistivity in carbon nanotube-based metal composites?
-
Hjortstam, O., Isberg, P., Soderholm, S. & Dai, H. Can we achieve ultra-low resistivity in carbon nanotube-based metal composites? Appl. Phys. A. 78, 1175-1179 (2004).
-
(2004)
Appl Phys. A.
, vol.78
, pp. 1175-1179
-
-
Hjortstam, O.1
Isberg, P.2
Soderholm, S.3
Dai, H.4
-
31
-
-
84857427383
-
Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals
-
Zhao, Y., Wei, J., Vajtai, R., Ajayan, P. M. & Barrera, E. V. Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals. Sci. Rep. 1, 83 (2011).
-
(2011)
Sci. Rep
, vol.1
, pp. 83
-
-
Zhao, Y.1
Wei, J.2
Vajtai, R.3
Ajayan, P.M.4
Barrera, E.V.5
-
32
-
-
80053599319
-
Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers
-
Xu et al. Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers. Nanoscale 3, 4215-4219 (2011).
-
(2011)
Nanoscale
, vol.3
, pp. 4215-4219
-
-
Xu1
-
33
-
-
33751561938
-
Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes
-
Futaba, D. N. et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 5, 987-994 (2006).
-
(2006)
Nat. Mater
, vol.5
, pp. 987-994
-
-
Futaba, D.N.1
-
34
-
-
8844263043
-
Water-assisted highly efficient synthesis of impurity-free singlewalled carbon nanotubes
-
Hata, K. et al. Water-assisted highly efficient synthesis of impurity-free singlewalled carbon nanotubes. Science 306, 1362-1364 (2004).
-
(2004)
Science
, vol.306
, pp. 1362-1364
-
-
Hata, K.1
-
36
-
-
84937650904
-
Electromigration - A brief survey and recent results
-
Black, J. R. Electromigration - A brief survey and recent results. IEEE Trans. Electron. Dev. 16, 338-347 (1969).
-
(1969)
IEEE Trans. Electron. Dev
, vol.16
, pp. 338-347
-
-
Black, J.R.1
-
38
-
-
0000697090
-
A model for conductor failure considering diffusion concurrently with electromigration resulting in a current exponent of 2
-
Shatzkes, M. & Lloyd, J. R. A model for conductor failure considering diffusion concurrently with electromigration resulting in a current exponent of 2. J. Appl. Phys. 59, 3890-3893 (1986).
-
(1986)
J. Appl. Phys
, vol.59
, pp. 3890-3893
-
-
Shatzkes, M.1
Lloyd, J.R.2
-
39
-
-
79956008500
-
Screening beneficial dopant to Cu interconnects by modeling
-
Liu, C.-L. Screening beneficial dopant to Cu interconnects by modeling. Appl. Phys. Lett. 80, 763-765 (2002).
-
(2002)
Appl. Phys. Lett
, vol.80
, pp. 763-765
-
-
Liu, C.-L.1
-
40
-
-
51349158937
-
Copper/carbon nanotubes composite interconnect for enhanced electromigration resistance
-
Florida, USA
-
Chai, Y. Copper/carbon nanotubes composite interconnect for enhanced electromigration resistance. 58th Electronic Components and Technology Conference, Florida, USA 412-420 (2008).
-
(2008)
58th Electronic Components and Technology Conference
, pp. 412-420
-
-
Chai, Y.1
-
42
-
-
4243956405
-
Thermal conductivity of singlewalled carbon nanotubes
-
Hone, J., Whitney, M., Piskoti, C. & Zettl, A. Thermal conductivity of singlewalled carbon nanotubes. Phys. Rev. B 59, R2514 (1999).
-
(1999)
Phys. Rev. B
, vol.59
-
-
Hone, J.1
Whitney, M.2
Piskoti, C.3
Zettl, A.4
-
45
-
-
0016472945
-
Activation energy for electrotransport in thin silver and gold films
-
Hummel, R. E. & Geier, H. J. Activation energy for electrotransport in thin silver and gold films. Thin Solid Films 25, 335-342 (1975).
-
(1975)
Thin Solid Films
, vol.25
, pp. 335-342
-
-
Hummel, R.E.1
Geier, H.J.2
-
46
-
-
0014630193
-
Electromigration failure modes in aluminum metallization for semiconductor devices
-
Black, J. R. Electromigration failure modes in aluminum metallization for semiconductor devices. P. IEEE 57, 1587-1594 (1969).
-
(1969)
P. IEEE
, vol.57
, pp. 1587-1594
-
-
Black, J.R.1
-
48
-
-
68949183355
-
Thermomigration versus electromigration in microelectronics solder joints
-
Abdulhamid, M. F., Basaran, C. & Lai, Y. S. Thermomigration versus electromigration in microelectronics solder joints. IEEE Trans. Adv. Pack 32, 627-635 (2009).
-
(2009)
IEEE Trans. Adv. Pack
, vol.32
, pp. 627-635
-
-
Abdulhamid, M.F.1
Basaran, C.2
Lai, Y.S.3
-
49
-
-
34249076385
-
In-situ observation of electromigration in eutectic SnPb solder lines: Atomic migration and hillock formation
-
Yoon, M. S. et al. In-situ observation of electromigration in eutectic SnPb solder lines: atomic migration and hillock formation. J. Electron. Mater 36, 562-567 (2007).
-
(2007)
J. Electron. Mater
, vol.36
, pp. 562-567
-
-
Yoon, M.S.1
-
50
-
-
67649221401
-
Breakdown current density of graphene nanoribbons
-
Murali, R., Yang, Y., Brenner, K., Beck, T. & Meindl, J. D. Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 94, 2431143 (2009).
-
(2009)
Appl. Phys. Lett
, vol.94
, pp. 2431143
-
-
Murali, R.1
Yang, Y.2
Brenner, K.3
Beck, T.4
Meindl, J.D.5
|