메뉴 건너뛰기




Volumn 2, Issue , 1999, Pages 708-713

Constructive induction: A version space-based approach

Author keywords

[No Author keywords available]

Indexed keywords

BENCH-MARK PROBLEMS; CONSTRUCTIVE INDUCTION; LEARNING STRATEGY; POLYNOMIAL NUMBER; PROBLEM DOMAIN; SPACE-BASED; TRAINING SETS; VERSION SPACE;

EID: 84880677072     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (6)

References (28)
  • 4
    • 2342657119 scopus 로고
    • Learning to represent codons: A challenge problem for constructive induction
    • Morgan Kaufmann
    • M.W. Craven and J.W. Shavlik. Learning to represent codons: A challenge problem for constructive induction. In Proc. of IJCAI-93, pages 1319-1324. Morgan Kaufmann, 1993.
    • (1993) Proc. Of IJCAI-93 , pp. 1319-1324
    • Craven, M.W.1    Shavlik, J.W.2
  • 5
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • to appear
    • T.G. Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, to appear, 1998.
    • (1998) Neural Computation
    • Dietterich, T.G.1
  • 6
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • Morgan Kaufmann
    • th ICML., pages 148-156. Morgan Kaufmann, 1996.
    • (1996) th ICML , pp. 148-156
    • Preund, Y.1    Shapire, R.E.2
  • 7
    • 0010278685 scopus 로고    scopus 로고
    • Local cascade generalization
    • J. Shavlik, ed., Morgan Kaufmann
    • th ICML., pages 206-214. Morgan Kaufmann, 1998.
    • (1998) th ICML , pp. 206-214
    • Gama, J.1
  • 8
    • 0024082469 scopus 로고
    • QUANTIFYING INDUCTIVE BIAS: AI LEARNING ALGORITHMS AND VALIANT'S LEARNING FRAMEWORK.
    • DOI 10.1016/0004-3702(88)90002-1
    • D. Haussler. Quantifying inductive bias : AI learning algorithms and Valiant's learning framework. Artificial Intelligence, 36:177-221, 1988. (Pubitemid 18655803)
    • (1988) Artificial Intelligence , vol.36 , Issue.2 , pp. 177-221
    • Haussler, D.1
  • 9
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • R.C. Holte. Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11:63-90, 1993.
    • (1993) Machine Learning , vol.11 , pp. 63-90
    • Holte, R.C.1
  • 10
    • 0031224128 scopus 로고    scopus 로고
    • Learning to reason
    • R. Khardon and D. Roth. Learning to reason. Jal of the ACM, 44(5):697-725, 1997. (Pubitemid 127614257)
    • (1997) Journal of the ACM , vol.44 , Issue.5 , pp. 697-725
    • Khardon, R.1    Roth, D.2
  • 11
    • 84880682185 scopus 로고    scopus 로고
    • Stochastic propositionalization of non-determinate background knowledge
    • D. Page, ed.
    • S. Kramer, B. Pfahringer, and C.- Helma. Stochastic propositionalization of non-determinate background knowledge. In D. Page, ed., Proc. of Inductive Logic Programming'98, pages 29-61, 1998.
    • (1998) Proc. Of Inductive Logic Programming'98 , pp. 29-61
    • Kramer, S.1    Pfahringer, B.2    Helma, C.3
  • 12
    • 0003046840 scopus 로고
    • A theory and methodology of inductive learning
    • R.S Michalski, J.G. Carbonell, and T.M. Mitchell, eds, Morgan Kaufmann
    • R.S. Michalski. A theory and methodology of inductive learning. In R.S Michalski, J.G. Carbonell, and T.M. Mitchell, eds, Machine Learning: an artificial intelligence approach, volume 1, pages 83-134. Morgan Kaufmann, 1983.
    • (1983) Machine Learning: An Artificial Intelligence Approach , vol.1 , pp. 83-134
    • Michalski, R.S.1
  • 14
    • 77951503082 scopus 로고
    • Inverse entailment and PROGOL
    • S. Muggleton. Inverse entailment and PROGOL. New Gen. Comput., 13:245-286, 1995.
    • (1995) New Gen. Comput. , vol.13 , pp. 245-286
    • Muggleton, S.1
  • 15
    • 85140468046 scopus 로고
    • Id2-of-3: Constructive induction of M-of-N concepts for discriminators in decision trees
    • L.A. Birnbaum and G.C. Collins, eds, Morgan Kaufmann
    • th IWML, pages 183-187. Morgan Kaufmann, 1991.
    • (1991) th IWML , pp. 183-187
    • Murphy, P.M.1    Pazzani, M.J.2
  • 16
    • 0008814745 scopus 로고
    • Using multidimensional projection to find relations
    • Morgan Kaufmann
    • th ICML., pages 447-455. Morgan Kaufmann, 1995.
    • (1995) th ICML , pp. 447-455
    • Perez, E.1    Rendell, L.A.2
  • 18
    • 0001172265 scopus 로고
    • Learning logical definition from relations
    • J.R. Quinlan. Learning logical definition from relations. Machine Learning, 5:239-266, 1990.
    • (1990) Machine Learning , vol.5 , pp. 239-266
    • Quinlan, J.R.1
  • 21
    • 84880659480 scopus 로고    scopus 로고
    • Tractable induction and classification in FOL via Stochastic Matching
    • Morgan Kaufmann
    • M. Sebag and C. Rouveirol. Tractable induction and classification in FOL via Stochastic Matching. In Proc. of IJCAI-97, pages 888-892. Morgan Kaufmann, 1997.
    • (1997) Proc. Of IJCAI-97 , pp. 888-892
    • Sebag, M.1    Rouveirol, C.2
  • 22
    • 0005365017 scopus 로고    scopus 로고
    • Delaying the choice of bias: A disjunctive version space approach
    • L. Saitta, ed., Morgan Kaufmann
    • th ICML., pages 444-452. Morgan Kaufmann, 1996.
    • (1996) th ICML , pp. 444-452
    • Sebag, M.1
  • 23
    • 84880685154 scopus 로고    scopus 로고
    • The predictive toxicology evaluation challenge
    • Morgan Kaufmann
    • A. Srinivasan. The predictive toxicology evaluation challenge. In Proc. of IJCAI-97, pages 4-8. Morgan Kaufmann, 1997.
    • (1997) Proc. Of IJCAI-97 , pp. 4-8
    • Srinivasan, A.1
  • 25
    • 0002949285 scopus 로고    scopus 로고
    • The problem with noise and small disjuncts
    • J. Shavlik, ed., Morgan Kaufmann
    • th ICML., pages 574-578. Morgan Kaufmann, 1998.
    • (1998) th ICML , pp. 574-578
    • Weiss, G.M.1    Hirsh, H.2
  • 26
    • 84880667270 scopus 로고    scopus 로고
    • Discovering representation space transformations for learning concept descriptions combining DNF and M-of-N rules
    • T. Fawcett, ed.
    • J. Wnek and R.S. Michalski. Discovering representation space transformations for learning concept descriptions combining DNF and M-of-N rules. In T. Fawcett, ed., Workshop on Constructive Induction, ICML-94, 1994.
    • Workshop on Constructive Induction, ICML-94, 1994
    • Wnek, J.1    Michalski, R.S.2
  • 28
    • 0041468013 scopus 로고    scopus 로고
    • Resource-bounded reasoning in intelligent systems
    • S. Zilberstein. Resource-bounded reasoning in intelligent systems. Computing Surveys, 28(4), 1996.
    • (1996) Computing Surveys , vol.28 , Issue.4
    • Zilberstein, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.