-
2
-
-
0003802343
-
-
01- Wadsworth, Belmont California
-
L. Breiman, J.H. Friedman, R.A. 01- shen, and C.J. Stone. Classification and Regression by tree. Wadsworth, Belmont California, 1984.
-
(1984)
Classification and Regression by Tree
-
-
Breiman, L.1
Friedman, J.H.2
Shen, R.A.3
Stone, C.J.4
-
4
-
-
2342657119
-
Learning to represent codons: A challenge problem for constructive induction
-
Morgan Kaufmann
-
M.W. Craven and J.W. Shavlik. Learning to represent codons: A challenge problem for constructive induction. In Proc. of IJCAI-93, pages 1319-1324. Morgan Kaufmann, 1993.
-
(1993)
Proc. Of IJCAI-93
, pp. 1319-1324
-
-
Craven, M.W.1
Shavlik, J.W.2
-
5
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
to appear
-
T.G. Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, to appear, 1998.
-
(1998)
Neural Computation
-
-
Dietterich, T.G.1
-
6
-
-
0002978642
-
Experiments with a new boosting algorithm
-
Morgan Kaufmann
-
th ICML., pages 148-156. Morgan Kaufmann, 1996.
-
(1996)
th ICML
, pp. 148-156
-
-
Preund, Y.1
Shapire, R.E.2
-
7
-
-
0010278685
-
Local cascade generalization
-
J. Shavlik, ed., Morgan Kaufmann
-
th ICML., pages 206-214. Morgan Kaufmann, 1998.
-
(1998)
th ICML
, pp. 206-214
-
-
Gama, J.1
-
8
-
-
0024082469
-
QUANTIFYING INDUCTIVE BIAS: AI LEARNING ALGORITHMS AND VALIANT'S LEARNING FRAMEWORK.
-
DOI 10.1016/0004-3702(88)90002-1
-
D. Haussler. Quantifying inductive bias : AI learning algorithms and Valiant's learning framework. Artificial Intelligence, 36:177-221, 1988. (Pubitemid 18655803)
-
(1988)
Artificial Intelligence
, vol.36
, Issue.2
, pp. 177-221
-
-
Haussler, D.1
-
9
-
-
0027580356
-
Very simple classification rules perform well on most commonly used datasets
-
R.C. Holte. Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11:63-90, 1993.
-
(1993)
Machine Learning
, vol.11
, pp. 63-90
-
-
Holte, R.C.1
-
10
-
-
0031224128
-
Learning to reason
-
R. Khardon and D. Roth. Learning to reason. Jal of the ACM, 44(5):697-725, 1997. (Pubitemid 127614257)
-
(1997)
Journal of the ACM
, vol.44
, Issue.5
, pp. 697-725
-
-
Khardon, R.1
Roth, D.2
-
11
-
-
84880682185
-
Stochastic propositionalization of non-determinate background knowledge
-
D. Page, ed.
-
S. Kramer, B. Pfahringer, and C.- Helma. Stochastic propositionalization of non-determinate background knowledge. In D. Page, ed., Proc. of Inductive Logic Programming'98, pages 29-61, 1998.
-
(1998)
Proc. Of Inductive Logic Programming'98
, pp. 29-61
-
-
Kramer, S.1
Pfahringer, B.2
Helma, C.3
-
12
-
-
0003046840
-
A theory and methodology of inductive learning
-
R.S Michalski, J.G. Carbonell, and T.M. Mitchell, eds, Morgan Kaufmann
-
R.S. Michalski. A theory and methodology of inductive learning. In R.S Michalski, J.G. Carbonell, and T.M. Mitchell, eds, Machine Learning: an artificial intelligence approach, volume 1, pages 83-134. Morgan Kaufmann, 1983.
-
(1983)
Machine Learning: An Artificial Intelligence Approach
, vol.1
, pp. 83-134
-
-
Michalski, R.S.1
-
14
-
-
77951503082
-
Inverse entailment and PROGOL
-
S. Muggleton. Inverse entailment and PROGOL. New Gen. Comput., 13:245-286, 1995.
-
(1995)
New Gen. Comput.
, vol.13
, pp. 245-286
-
-
Muggleton, S.1
-
15
-
-
85140468046
-
Id2-of-3: Constructive induction of M-of-N concepts for discriminators in decision trees
-
L.A. Birnbaum and G.C. Collins, eds, Morgan Kaufmann
-
th IWML, pages 183-187. Morgan Kaufmann, 1991.
-
(1991)
th IWML
, pp. 183-187
-
-
Murphy, P.M.1
Pazzani, M.J.2
-
16
-
-
0008814745
-
Using multidimensional projection to find relations
-
Morgan Kaufmann
-
th ICML., pages 447-455. Morgan Kaufmann, 1995.
-
(1995)
th ICML
, pp. 447-455
-
-
Perez, E.1
Rendell, L.A.2
-
18
-
-
0001172265
-
Learning logical definition from relations
-
J.R. Quinlan. Learning logical definition from relations. Machine Learning, 5:239-266, 1990.
-
(1990)
Machine Learning
, vol.5
, pp. 239-266
-
-
Quinlan, J.R.1
-
21
-
-
84880659480
-
Tractable induction and classification in FOL via Stochastic Matching
-
Morgan Kaufmann
-
M. Sebag and C. Rouveirol. Tractable induction and classification in FOL via Stochastic Matching. In Proc. of IJCAI-97, pages 888-892. Morgan Kaufmann, 1997.
-
(1997)
Proc. Of IJCAI-97
, pp. 888-892
-
-
Sebag, M.1
Rouveirol, C.2
-
22
-
-
0005365017
-
Delaying the choice of bias: A disjunctive version space approach
-
L. Saitta, ed., Morgan Kaufmann
-
th ICML., pages 444-452. Morgan Kaufmann, 1996.
-
(1996)
th ICML
, pp. 444-452
-
-
Sebag, M.1
-
23
-
-
84880685154
-
The predictive toxicology evaluation challenge
-
Morgan Kaufmann
-
A. Srinivasan. The predictive toxicology evaluation challenge. In Proc. of IJCAI-97, pages 4-8. Morgan Kaufmann, 1997.
-
(1997)
Proc. Of IJCAI-97
, pp. 4-8
-
-
Srinivasan, A.1
-
25
-
-
0002949285
-
The problem with noise and small disjuncts
-
J. Shavlik, ed., Morgan Kaufmann
-
th ICML., pages 574-578. Morgan Kaufmann, 1998.
-
(1998)
th ICML
, pp. 574-578
-
-
Weiss, G.M.1
Hirsh, H.2
-
26
-
-
84880667270
-
Discovering representation space transformations for learning concept descriptions combining DNF and M-of-N rules
-
T. Fawcett, ed.
-
J. Wnek and R.S. Michalski. Discovering representation space transformations for learning concept descriptions combining DNF and M-of-N rules. In T. Fawcett, ed., Workshop on Constructive Induction, ICML-94, 1994.
-
Workshop on Constructive Induction, ICML-94, 1994
-
-
Wnek, J.1
Michalski, R.S.2
-
28
-
-
0041468013
-
Resource-bounded reasoning in intelligent systems
-
S. Zilberstein. Resource-bounded reasoning in intelligent systems. Computing Surveys, 28(4), 1996.
-
(1996)
Computing Surveys
, vol.28
, Issue.4
-
-
Zilberstein, S.1
|