메뉴 건너뛰기




Volumn , Issue , 2013, Pages 553-564

Don't be SCAREd: Use SCalable Automatic REpairing with maximal likelihood and bounded changes

Author keywords

Data cleaning; Inconsistent data

Indexed keywords

AUTOMATIC REPAIRING; COMPUTATIONAL PROCEDURES; DATA CLEANING; INCONSISTENT DATA; LIKELIHOOD METHODS; MACHINE LEARNING TECHNIQUES; REAL-WORLD DATASETS; STATISTICAL MACHINE LEARNING;

EID: 84880515658     PISSN: 07308078     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2463676.2463706     Document Type: Conference Paper
Times cited : (154)

References (23)
  • 1
    • 0001861551 scopus 로고
    • Polynomial time approximation schemes for dense instances of np-hard problems
    • S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation schemes for dense instances of np-hard problems. In STOC, 1995.
    • (1995) STOC
    • Arora, S.1    Karger, D.2    Karpinski, M.3
  • 3
    • 84959912087 scopus 로고    scopus 로고
    • Improving data quality: Consistency and accuracy
    • G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. Improving data quality: consistency and accuracy. In VLDB, 2007.
    • (2007) VLDB
    • Cong, G.1    Fan, W.2    Geerts, F.3    Jia, X.4    Ma, S.5
  • 4
    • 77956522919 scopus 로고    scopus 로고
    • Bayes optimal multilabel classification via probabilistic classifier chains
    • K. Dembczynski, W. Cheng, and E. Hullermeier. Bayes optimal multilabel classification via probabilistic classifier chains. In ICML, 2010.
    • (2010) ICML
    • Dembczynski, K.1    Cheng, W.2    Hullermeier, E.3
  • 5
    • 0002900451 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • T. G. Dietterich. Ensemble methods in machine learning. In MCS workshop, 2000.
    • (2000) MCS Workshop
    • Dietterich, T.G.1
  • 8
    • 57549084481 scopus 로고    scopus 로고
    • Dependencies revisited for improving data quality
    • W. Fan. Dependencies revisited for improving data quality. In PODS, 2008.
    • (2008) PODS
    • Fan, W.1
  • 9
  • 10
    • 84858615261 scopus 로고    scopus 로고
    • Towards certain fixes with editing rules and master data
    • W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Towards certain fixes with editing rules and master data. PVLDB, 2010.
    • (2010) PVLDB
    • Fan, W.1    Li, J.2    Ma, S.3    Tang, N.4    Yu, W.5
  • 11
    • 79959944062 scopus 로고    scopus 로고
    • Interaction between record matching and data repairing
    • W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Interaction between record matching and data repairing. In SIGMOD, 2011.
    • (2011) SIGMOD
    • Fan, W.1    Li, J.2    Ma, S.3    Tang, N.4    Yu, W.5
  • 12
    • 77956219683 scopus 로고    scopus 로고
    • On the densest k-subgraph problem
    • U. Feige and M. Seltser. On the densest k-subgraph problem. Algorithmica, 1997.
    • (1997) Algorithmica
    • Feige, U.1    Seltser, M.2
  • 15
    • 0020822226 scopus 로고
    • Efficient bounds for the stable set, vertex cover and set packing problems
    • D. S. Hochbaum. Efficient bounds for the stable set, vertex cover and set packing problems. In Discrete Applied Mathematics, 1983.
    • (1983) Discrete Applied Mathematics
    • Hochbaum, D.S.1
  • 17
    • 52649126564 scopus 로고    scopus 로고
    • Correlation-based detection of attribute outliers
    • J. L. Y. Koh, M. L. Lee, W. Hsu, and K. T. Lam. Correlation-based detection of attribute outliers. In DASFAA, 2007.
    • (2007) DASFAA
    • Koh, J.L.Y.1    Lee, M.L.2    Hsu, W.3    Lam, K.T.4
  • 18
    • 77951101246 scopus 로고    scopus 로고
    • On approximating optimum repairs for functional dependency violations
    • S. Kolahi and L. V. S. Lakshmanan. On approximating optimum repairs for functional dependency violations. In ICDT, 2009.
    • (2009) ICDT
    • Kolahi, S.1    Lakshmanan, L.V.S.2
  • 19
    • 34548775857 scopus 로고    scopus 로고
    • Efficient approximation algorithms for repairing inconsistent databases
    • A. Lopatenko and L. Bravo. Efficient approximation algorithms for repairing inconsistent databases. In ICDE, 2007.
    • (2007) ICDE
    • Lopatenko, A.1    Bravo, L.2
  • 20
    • 77954714416 scopus 로고    scopus 로고
    • Eracer: A database approach for statistical inference and data cleaning
    • C. Mayfield, J. Neville, and S. Prabhakar. Eracer: a database approach for statistical inference and data cleaning. In SIGMOD, 2010.
    • (2010) SIGMOD
    • Mayfield, C.1    Neville, J.2    Prabhakar, S.3
  • 23
    • 19544372918 scopus 로고    scopus 로고
    • Class noise vs. attribute noise: A quantitative study of their impacts
    • November
    • X. Zhu and X. Wu. Class noise vs. attribute noise: a quantitative study of their impacts. Artif. Intell. Rev., 22:177-210, November 2004.
    • (2004) Artif. Intell. Rev. , vol.22 , pp. 177-210
    • Zhu, X.1    Wu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.