메뉴 건너뛰기




Volumn 10, Issue 1, 2013, Pages

Multiple imputation based on conditional quantile estimation

Author keywords

Conditional quantiles; Missing data; Multiple imputation; Quantile regression; Smoothing splines

Indexed keywords


EID: 84880484096     PISSN: None     EISSN: 22820930     Source Type: Journal    
DOI: 10.2427/875     Document Type: Article
Times cited : (10)

References (42)
  • 4
    • 0004093524 scopus 로고    scopus 로고
    • Sage University Papers Series on Quantitative Applications in the Social Sciences, Thousand Oaks, CA:Sage
    • Allison, P. D. (2001). Missing Data. Sage University Papers Series on Quantitative Applications in the Social Sciences, 107-136.Thousand Oaks, CA:Sage.
    • (2001) Missing Data , pp. 107-136
    • Allison, P.D.1
  • 7
    • 85047673373 scopus 로고    scopus 로고
    • Multiple imputation: Our view of the state of the art
    • Schafer, J. L. and Graham, J. W. (2002). Multiple imputation: our view of the state of the art. Psychological Methods 7, 147-177.
    • (2002) Psychological Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 8
    • 33846873244 scopus 로고    scopus 로고
    • Much ado about nothing: A comparison of missing data methods and software to fit incomplete data regression models
    • Horton, N. J. and Kleinman, K. P. (2007). Much ado about nothing: A comparison of missing data methods and software to fit incomplete data regression models. The American Statistician 61, 79-90.
    • (2007) The American Statistician , vol.61 , pp. 79-90
    • Horton, N.J.1    Kleinman, K.P.2
  • 9
    • 34250686456 scopus 로고    scopus 로고
    • Multiple imputation: Review of theory, implementation and software
    • Harel, O. and Zhao, X.-H. (2007). Multiple imputation: Review of theory, implementation and software. Statistics in Medicine 26, 3057-3077.
    • (2007) Statistics In Medicine , vol.26 , pp. 3057-3077
    • Harel, O.1    Zhao, X.-H.2
  • 11
    • 58749115237 scopus 로고    scopus 로고
    • Analyses of cumulative incidence functions via non-parametric multiple imputation
    • Ruan, P. K. and Gray, R. J. (2008). Analyses of cumulative incidence functions via non-parametric multiple imputation. Statistics in Medicine 27, 5709-5724.
    • (2008) Statistics In Medicine , vol.27 , pp. 5709-5724
    • Ruan, P.K.1    Gray, R.J.2
  • 12
    • 48749117183 scopus 로고    scopus 로고
    • Missing confounding data in marginal structural models: A comparison of inverse probability weighting and multiple imputation
    • Moodie, E. E. M., Delaney, J. A. C., Lefebvre, G., and Platt, R. W. (2009). Missing confounding data in marginal structural models: A comparison of inverse probability weighting and multiple imputation. International Journal of Biostatistics 4.1.
    • (2009) International Journal of Biostatistics , vol.4 , pp. 1
    • Moodie, E.E.M.1    Delaney, J.A.C.2    Lefebvre, G.3    Platt, R.W.4
  • 13
    • 0038716868 scopus 로고    scopus 로고
    • Bayesian non-parametric multiple imputation of partially observed data with ignorable nonresponse
    • Paddock, S. M. (2002). Bayesian non-parametric multiple imputation of partially observed data with ignorable nonresponse. Biometrika 89, 529-38.
    • (2002) Biometrika , vol.89 , pp. 529-538
    • Paddock, S.M.1
  • 14
    • 1142304587 scopus 로고    scopus 로고
    • Nonparametric markov chain bootstrap for multiple imputation
    • Zhang, L.-C. (2004). Nonparametric markov chain bootstrap for multiple imputation. Computational Statistics & Data Analysis 45, 343-353.
    • (2004) Computational Statistics & Data Analysis , vol.45 , pp. 343-353
    • Zhang, L.-C.1
  • 18
    • 0037469115 scopus 로고    scopus 로고
    • Mixture model clustering for mixed data with missing information
    • Hunt, L. and Jorgensen (2003). Mixture model clustering for mixed data with missing information. Computational Statistics &; Data Analysis 41, 429-440.
    • (2003) Computational Statistics &; Data Analysis , vol.41 , pp. 429-440
    • Hunt, L.1
  • 19
    • 65349172950 scopus 로고    scopus 로고
    • Empirical likelihood for estimating equations with missing values
    • Wang, D. and Chen, S. X. (2009). Empirical likelihood for estimating equations with missing values. Annals of Statistics 37, 490-517.
    • (2009) Annals of Statistics , vol.37 , pp. 490-517
    • Wang, D.1    Chen, S.X.2
  • 20
    • 34347407592 scopus 로고    scopus 로고
    • Multiple imputation of discrete and continuous data by fully conditional specification
    • van Buuren, S. (2007). Multiple imputation of discrete and continuous data by fully conditional specification. Statistical Methods in Medical Research 16, 219-242.
    • (2007) Statistical Methods In Medical Research , vol.16 , pp. 219-242
    • van Buuren, S.1
  • 21
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 23
    • 0000273843 scopus 로고
    • Regression quantiles
    • Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica 46, 33-50.
    • (1978) Econometrica , vol.46 , pp. 33-50
    • Koenker, R.1    Bassett, G.2
  • 26
    • 33947268225 scopus 로고    scopus 로고
    • Power transformation toward a linear regression quantile
    • Mu, Y. and He, X. (2007). Power transformation toward a linear regression quantile. JASA 102, 269-279.
    • (2007) JASA , vol.102 , pp. 269-279
    • Mu, Y.1    He, X.2
  • 28
    • 0041110742 scopus 로고    scopus 로고
    • Quantile regression methods for longitudinal data with drop-outs: Application to cd4 cell counts of patients infected with the human immunodeficiency virus
    • Series C: Applied Statistics
    • Lipsitz, S. R., Fitzmaurice, G. M., Molenberghs, G., and Zhao, L. P. (1997). Quantile regression methods for longitudinal data with drop-outs: application to cd4 cell counts of patients infected with the human immunodeficiency virus. Journal of the Royal Statistical Society, Series C: Applied Statistics 46, 463-476.
    • (1997) Journal of the Royal Statistical Society , vol.46 , pp. 463-476
    • Lipsitz, S.R.1    Fitzmaurice, G.M.2    Molenberghs, G.3    Zhao, L.P.4
  • 29
    • 33845446905 scopus 로고    scopus 로고
    • Quantile regression for longitudinal data using the asymmetric laplace distribution
    • Geraci, M. and Bottai, M. (2007). Quantile regression for longitudinal data using the asymmetric laplace distribution. Biostatistics 8, 140-154.
    • (2007) Biostatistics , vol.8 , pp. 140-154
    • Geraci, M.1    Bottai, M.2
  • 30
    • 77749264349 scopus 로고    scopus 로고
    • Flexible bayesian quantile regression for independent and clustered data
    • Reich, B., Bondell, H., and Wang, H. (2010). Flexible bayesian quantile regression for independent and clustered data. Biostatistics page 11 (2): 337-352.
    • (2010) Biostatistics Page , vol.11 , Issue.2 , pp. 337-352
    • Reich, B.1    Bondell, H.2    Wang, H.3
  • 31
    • 38249039685 scopus 로고
    • Censored quantile regression
    • Powell, J. (1986). Censored quantile regression. Journal of Econometrics 32, 143-155.
    • (1986) Journal of Econometrics , vol.32 , pp. 143-155
    • Powell, J.1
  • 34
    • 77956278285 scopus 로고    scopus 로고
    • Laplace regression with censored data
    • Bottai, M. and Zhang, J. (2010). Laplace regression with censored data. Biometrical Journal 52, 487-503.
    • (2010) Biometrical Journal , vol.52 , pp. 487-503
    • Bottai, M.1    Zhang, J.2
  • 36
    • 0033616909 scopus 로고    scopus 로고
    • Multiple imputation of missing blood pressure covariates in survival analysis
    • van Buuren, S., Boshuizen, H., and Knook, D. (1999). Multiple imputation of missing blood pressure covariates in survival analysis. Statistics in medicine 18, 681-694.
    • (1999) Statistics In Medicine , vol.18 , pp. 681-694
    • van Buuren, S.1    Boshuizen, H.2    Knook, D.3
  • 39
    • 0002344593 scopus 로고    scopus 로고
    • A multivariate technique for multiply imputing missing values using a sequence of regression models
    • Raghunathan, T. E., Lepkowski, J. M., van Hoewyk, J., and Solenberger, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology 27, 85-95.
    • (2001) Survey Methodology , vol.27 , pp. 85-95
    • Raghunathan, T.E.1    Lepkowski, J.M.2    van Hoewyk, J.3    Solenberger, P.4
  • 40
    • 5344244656 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0R Development Core Team
    • R Development Core Team (2008). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
    • (2008) R: A Language and Environment For Statistical Computing
  • 42
    • 0021798918 scopus 로고
    • Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research
    • Caspersen, C. J., Powell, K. E., and Christenson, G. M. (1985). Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep 100, 126-131.
    • (1985) Public Health Rep , vol.100 , pp. 126-131
    • Caspersen, C.J.1    Powell, K.E.2    Christenson, G.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.