메뉴 건너뛰기




Volumn 1, Issue 4, 2012, Pages 318-325

Simplified thermal and hygric building models: A literature review

Author keywords

Building performance simulation; Climate change; Inverse modelling; Literature review; Simplified building models

Indexed keywords


EID: 84880447295     PISSN: 20952635     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.foar.2012.09.001     Document Type: Review
Times cited : (119)

References (51)
  • 1
    • 0032033052 scopus 로고    scopus 로고
    • Apparent and effective thermal capacitance of buildings
    • Antonopoulos K., Koronaki E. Apparent and effective thermal capacitance of buildings. Energy 1998, 23:183-192.
    • (1998) Energy , vol.23 , pp. 183-192
    • Antonopoulos, K.1    Koronaki, E.2
  • 2
    • 0032677814 scopus 로고    scopus 로고
    • Envelope and indoor thermal capacitance of buildings
    • Antonopoulos K., Koronaki E. Envelope and indoor thermal capacitance of buildings. Applied Thermal Engineering 1999, 19:743-756.
    • (1999) Applied Thermal Engineering , vol.19 , pp. 743-756
    • Antonopoulos, K.1    Koronaki, E.2
  • 3
    • 78651413658 scopus 로고    scopus 로고
    • Parameter identification and model based predictive control of temperature inside a house
    • Balan R., Cooper J., Chao K., Stan S., Donca R. Parameter identification and model based predictive control of temperature inside a house. Energy and Buildings 2011, 43:748-758.
    • (2011) Energy and Buildings , vol.43 , pp. 748-758
    • Balan, R.1    Cooper, J.2    Chao, K.3    Stan, S.4    Donca, R.5
  • 4
    • 0031259806 scopus 로고    scopus 로고
    • Real time estimation of dynamic temperature models for greenhouse environment control
    • Boaventura Cunha B., Couto C., Ruano A. Real time estimation of dynamic temperature models for greenhouse environment control. Control Engineering Practice 1997, 5:1473-1481.
    • (1997) Control Engineering Practice , vol.5 , pp. 1473-1481
    • Boaventura Cunha, B.1    Couto, C.2    Ruano, A.3
  • 8
    • 67649148836 scopus 로고    scopus 로고
    • Heat air and moisture model for building and systems evaluation
    • de Wit M. Heat air and moisture model for building and systems evaluation. Bouwstenen 2006, 100:100.
    • (2006) Bouwstenen , vol.100 , pp. 100
    • de Wit, M.1
  • 9
    • 0036837015 scopus 로고    scopus 로고
    • Development of a simplified and accurate building model based on electrical analogy
    • Fraisse G., Viardot C., Lafabrie O., Achard G. Development of a simplified and accurate building model based on electrical analogy. Energy and Buildings 2002, 34:1017-1031.
    • (2002) Energy and Buildings , vol.34 , pp. 1017-1031
    • Fraisse, G.1    Viardot, C.2    Lafabrie, O.3    Achard, G.4
  • 10
    • 0037327820 scopus 로고    scopus 로고
    • Modelling greenhouse temperature by means of auto regressive models
    • Frausto H., Pieters J., Deltour J. Modelling greenhouse temperature by means of auto regressive models. Biosystems Engineering 2003, 84:147-157.
    • (2003) Biosystems Engineering , vol.84 , pp. 147-157
    • Frausto, H.1    Pieters, J.2    Deltour, J.3
  • 11
    • 0742324118 scopus 로고    scopus 로고
    • Modeling greenhouse temperature using system identification by means of neural networks
    • Frausto H., Pieters J. Modeling greenhouse temperature using system identification by means of neural networks. Neurocomputing 2004, 56:423-428.
    • (2004) Neurocomputing , vol.56 , pp. 423-428
    • Frausto, H.1    Pieters, J.2
  • 12
    • 0036883863 scopus 로고    scopus 로고
    • Building thermal model reduction using nonlinear constrained optimization
    • Gouda M., Danaher S., Underwood C. Building thermal model reduction using nonlinear constrained optimization. Building and Environment 2002, 37:1255-1265.
    • (2002) Building and Environment , vol.37 , pp. 1255-1265
    • Gouda, M.1    Danaher, S.2    Underwood, C.3
  • 14
    • 34548861778 scopus 로고    scopus 로고
    • Identification of the main thermal characteristics of building components using Matlab
    • Jimenez M., Madsen H., Andersen K. Identification of the main thermal characteristics of building components using Matlab. Building and Environment 2008, 43:170-180.
    • (2008) Building and Environment , vol.43 , pp. 170-180
    • Jimenez, M.1    Madsen, H.2    Andersen, K.3
  • 16
    • 84943012501 scopus 로고    scopus 로고
    • The impact of climate change on the indoor climate of monumental buildings. Department of Architecture Building and Planning, University of Technology Eindhoven, Eindhoven.
    • Kramer, R., 2011. The impact of climate change on the indoor climate of monumental buildings. Department of Architecture Building and Planning, University of Technology Eindhoven, Eindhoven.
    • (2011)
    • Kramer, R.1
  • 18
    • 1642384630 scopus 로고    scopus 로고
    • Modeling the passive thermal response of a building using sparse BMS data
    • Lowry G., Lee M. Modeling the passive thermal response of a building using sparse BMS data. Applied Energy 2002, 78:53-62.
    • (2002) Applied Energy , vol.78 , pp. 53-62
    • Lowry, G.1    Lee, M.2
  • 19
    • 0027269168 scopus 로고
    • Stochastic modelling of temperatures for a full-scale occupied building zone subject to natural random influences
    • Loveday D., Craggs C. Stochastic modelling of temperatures for a full-scale occupied building zone subject to natural random influences. Applied Energy 1993, 45:295-312.
    • (1993) Applied Energy , vol.45 , pp. 295-312
    • Loveday, D.1    Craggs, C.2
  • 20
    • 63049115986 scopus 로고    scopus 로고
    • Prediction of indoor temperature and relative humidity using neural network models: model comparison
    • Lu T., Viljanen M. Prediction of indoor temperature and relative humidity using neural network models: model comparison. Neural Computing and Applications 2009, 18:345-357.
    • (2009) Neural Computing and Applications , vol.18 , pp. 345-357
    • Lu, T.1    Viljanen, M.2
  • 22
    • 2342635095 scopus 로고    scopus 로고
    • A comparison of linear and neural network ARX models applied to a prediction of the indoor temperature of a building
    • Mechaqrane A., Zouak M. A comparison of linear and neural network ARX models applied to a prediction of the indoor temperature of a building. Neural Computing and Applications 2004, 13:32-37.
    • (2004) Neural Computing and Applications , vol.13 , pp. 32-37
    • Mechaqrane, A.1    Zouak, M.2
  • 23
    • 56549090156 scopus 로고    scopus 로고
    • Long-term time series prediction with the NARX network: an empirical evaluation
    • Menezes J., Barreto G. Long-term time series prediction with the NARX network: an empirical evaluation. Neurocomputing 2008, 71:3335-3343.
    • (2008) Neurocomputing , vol.71 , pp. 3335-3343
    • Menezes, J.1    Barreto, G.2
  • 26
    • 34147099695 scopus 로고    scopus 로고
    • Modelling temperature in intelligent buildings by means of autoregressive models
    • Moreno G., Perea M., Miranda R., Guzmán V., Ruiz G. Modelling temperature in intelligent buildings by means of autoregressive models. Automation in Construction 2007, 16:713-722.
    • (2007) Automation in Construction , vol.16 , pp. 713-722
    • Moreno, G.1    Perea, M.2    Miranda, R.3    Guzmán, V.4    Ruiz, G.5
  • 27
    • 72649090900 scopus 로고    scopus 로고
    • Development of room temperature and relative humidity linear parametric models for an open office using BMS data
    • Mustafaraj G., Chen J., Lowry G. Development of room temperature and relative humidity linear parametric models for an open office using BMS data. Energy and Buildings 2010, 42:348-356.
    • (2010) Energy and Buildings , vol.42 , pp. 348-356
    • Mustafaraj, G.1    Chen, J.2    Lowry, G.3
  • 28
    • 79953749287 scopus 로고    scopus 로고
    • Prediction of room temperature and relative humidity by autoregressive linear and nonlinear neural network models for an open office
    • Mustafaraj G., Lowry G., Chen J. Prediction of room temperature and relative humidity by autoregressive linear and nonlinear neural network models for an open office. Energy and Buildings 2011, 43:1452-1460.
    • (2011) Energy and Buildings , vol.43 , pp. 1452-1460
    • Mustafaraj, G.1    Lowry, G.2    Chen, J.3
  • 29
    • 10844227191 scopus 로고    scopus 로고
    • Simple tool to evaluate energy demand and indoor environment in the early stages of building design
    • Nielsen T. Simple tool to evaluate energy demand and indoor environment in the early stages of building design. Solar Energy 2005, 78:73-83.
    • (2005) Solar Energy , vol.78 , pp. 73-83
    • Nielsen, T.1
  • 31
    • 0025595350 scopus 로고
    • Estimating thermal parameters of outdoor test cells
    • Norlén P. Estimating thermal parameters of outdoor test cells. Building and Environment 1990, 25:17-24.
    • (1990) Building and Environment , vol.25 , pp. 17-24
    • Norlén, P.1
  • 32
    • 39149127282 scopus 로고    scopus 로고
    • Modelling of tropical greenhouse temperature by autoregressive and neural network models
    • Patil S., Tantau H., Salokhe V. Modelling of tropical greenhouse temperature by autoregressive and neural network models. Biosystems Engineering 2008, 99:423-431.
    • (2008) Biosystems Engineering , vol.99 , pp. 423-431
    • Patil, S.1    Tantau, H.2    Salokhe, V.3
  • 33
    • 0025595795 scopus 로고
    • Second order system identification in the thermal response of a working school
    • Penman J. Second order system identification in the thermal response of a working school. Building and Environment 1990, 25:105-110.
    • (1990) Building and Environment , vol.25 , pp. 105-110
    • Penman, J.1
  • 34
    • 0028342262 scopus 로고
    • A thermal design tool for buildings in ground contact
    • Richards P., Mathews E. A thermal design tool for buildings in ground contact. Building and Environment 1994, 29:73-82.
    • (1994) Building and Environment , vol.29 , pp. 73-82
    • Richards, P.1    Mathews, E.2
  • 35
    • 33645384891 scopus 로고    scopus 로고
    • Predictions of building's temperature using neural networks models
    • Ruano A., Crispim E., Coincecao E., Lucio M. Predictions of building's temperature using neural networks models. Energy and Buildings 2006, 38:682-694.
    • (2006) Energy and Buildings , vol.38 , pp. 682-694
    • Ruano, A.1    Crispim, E.2    Coincecao, E.3    Lucio, M.4
  • 36
    • 1842419448 scopus 로고    scopus 로고
    • Analysis of numerical methods and simulation time step effects on the prediction of building thermal performance
    • Santos G.dos, Mendes N. Analysis of numerical methods and simulation time step effects on the prediction of building thermal performance. Applied Thermal Engineering 2004, 24:1129-1142.
    • (2004) Applied Thermal Engineering , vol.24 , pp. 1129-1142
    • Santos, G.D.1    Mendes, N.2
  • 37
    • 42149111064 scopus 로고    scopus 로고
    • Integrated Heat Air and Moisture Modeling and Simulation
    • Ph.D. Thesis. University of Technology Eindhoven, Eindhoven.
    • Schijndel, A.W.M. van, 2007. Integrated Heat Air and Moisture Modeling and Simulation. Ph.D. Thesis. University of Technology Eindhoven, Eindhoven.
    • (2007)
    • van Schijndel, A.W.M.1
  • 38
    • 84943011510 scopus 로고    scopus 로고
    • The exploration of an inversed modeling technique to obtain material properties of a building construction
    • In: Proceedings of the 4th International Building Physics Conference. Istanbul
    • Schijndel, A.W.M. van, 2009. The exploration of an inversed modeling technique to obtain material properties of a building construction. In: Proceedings of the 4th International Building Physics Conference. Istanbul, pp. 91-98.
    • (2009) , pp. 91-98
    • van Schijndel, A.W.M.1
  • 39
    • 84943011145 scopus 로고    scopus 로고
    • Modeling the effect of climate change in historic buildings at several scale levels
    • In: Proceedings of the International WTA Conference, Eindhoven
    • Schijndel, A.W.M. van, Schellen, H., Martens, M., Aarle, M. van, 2010. Modeling the effect of climate change in historic buildings at several scale levels. In: Proceedings of the International WTA Conference, Eindhoven, pp. 161-180.
    • (2010) , pp. 161-180
    • van Schijndel, A.W.M.1    Schellen, H.2    Martens, M.3    van Aarle, M.4
  • 40
    • 84946889041 scopus 로고    scopus 로고
    • Inverse modeling of the indoor climate using a 2-state 5-parameters model in Matlab
    • In: Climate for Culture, Third Annual Meeting. Visby
    • Schijndel, A.W.M. van, Schellen, H., 2011. Inverse modeling of the indoor climate using a 2-state 5-parameters model in Matlab. In: Climate for Culture, Third Annual Meeting. Visby, pp. 1-12.
    • (2011) , pp. 1-12
    • van Schijndel, A.W.M.1    Schellen, H.2
  • 43
    • 14544268558 scopus 로고    scopus 로고
    • Methods for fault detection, diagnostics, and prognostics
    • Srinivas K., Brambley M. Methods for fault detection, diagnostics, and prognostics. HVAC and R Research 2005, 11:3-25.
    • (2005) HVAC and R Research , vol.11 , pp. 3-25
    • Srinivas, K.1    Brambley, M.2
  • 44
    • 0015207209 scopus 로고
    • Calculation of heat conduction transfer functions for multilayer slabs
    • Stephenson D., Mitalas G. Calculation of heat conduction transfer functions for multilayer slabs. ASHRAE Transactions 1971, 77:117-126.
    • (1971) ASHRAE Transactions , vol.77 , pp. 117-126
    • Stephenson, D.1    Mitalas, G.2
  • 45
    • 75349111592 scopus 로고    scopus 로고
    • Co-simulation for Performance Prediction of Innovative Integrated Mechanical Energy Systems in Buildings
    • Ph.D. Thesis. University of Technology Eindhoven, Eindhoven.
    • Trčka, M., 2008. Co-simulation for Performance Prediction of Innovative Integrated Mechanical Energy Systems in Buildings. Ph.D. Thesis. University of Technology Eindhoven, Eindhoven.
    • (2008)
    • Trčka, M.1
  • 46
    • 0035314087 scopus 로고    scopus 로고
    • A novel and simple building load calculation model for building and system dynamic simulation
    • Wang S., Chen Y. A novel and simple building load calculation model for building and system dynamic simulation. Applied Thermal Engineering 2001, 21:683-702.
    • (2001) Applied Thermal Engineering , vol.21 , pp. 683-702
    • Wang, S.1    Chen, Y.2
  • 47
    • 31444445721 scopus 로고    scopus 로고
    • Simplified building model for transient thermal performance estimation using GA-based parameter identification
    • Wang S., Xu X. Simplified building model for transient thermal performance estimation using GA-based parameter identification. International Journal of Thermal Sciences 2006, 45:419-432.
    • (2006) International Journal of Thermal Sciences , vol.45 , pp. 419-432
    • Wang, S.1    Xu, X.2
  • 48
    • 33645392733 scopus 로고    scopus 로고
    • Parameter estimation of internal thermal mass of building dynamic models using genetic algorithm
    • Wang S., Xu X. Parameter estimation of internal thermal mass of building dynamic models using genetic algorithm. Energy Conversion and Management 2006, 47:1927-1941.
    • (2006) Energy Conversion and Management , vol.47 , pp. 1927-1941
    • Wang, S.1    Xu, X.2
  • 49
    • 33847621652 scopus 로고    scopus 로고
    • Optimal simplified thermal models of building envelope based on frequency domain regression using genetic algorithm
    • Xu X., Wang S. Optimal simplified thermal models of building envelope based on frequency domain regression using genetic algorithm. Energy and Buildings 2007, 39:525-536.
    • (2007) Energy and Buildings , vol.39 , pp. 525-536
    • Xu, X.1    Wang, S.2
  • 50
    • 45849115504 scopus 로고    scopus 로고
    • A simplified dynamic model for existing buildings using CTF and thermal network models
    • Xu X., Wang S. A simplified dynamic model for existing buildings using CTF and thermal network models. International Journal of Thermal Sciences 2008, 47:1249-1262.
    • (2008) International Journal of Thermal Sciences , vol.47 , pp. 1249-1262
    • Xu, X.1    Wang, S.2
  • 51
    • 0033322027 scopus 로고    scopus 로고
    • Utilization factor for building solar-heat gain in for use in a simplified energy model
    • Yohanis Y., Norton B. Utilization factor for building solar-heat gain in for use in a simplified energy model. Applied Energy 1999, 63:227-239.
    • (1999) Applied Energy , vol.63 , pp. 227-239
    • Yohanis, Y.1    Norton, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.