-
4
-
-
0030244058
-
A new heuristic algorithm solving the linear ordering problem
-
S. Chanas and P. Kobylanski. A new heuristic algorithm solving the linear ordering problem. Comput. Optim. Appl., 6(2):191-205, 1996.
-
(1996)
Comput. Optim. Appl.
, vol.6
, Issue.2
, pp. 191-205
-
-
Chanas, S.1
Kobylanski, P.2
-
8
-
-
0001332440
-
Spearman's footrule as a measure of disarray
-
P. Diaconis and R. L. Graham. Spearman's footrule as a measure of disarray. J. Roy. Statist. Soc. Ser. B, 39(2):262-268, 1977.
-
(1977)
J. Roy. Statist. Soc. Ser. B
, vol.39
, Issue.2
, pp. 262-268
-
-
Diaconis, P.1
Graham, R.L.2
-
9
-
-
85049919974
-
Rank aggregation methods for the web
-
ACM
-
C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the web. In WWW '01: Proceedings of the 10th International Conference on World Wide Web, pages 613-622. ACM, 2001.
-
(2001)
WWW '01: Proceedings of the 10th International Conference on World Wide Web
, pp. 613-622
-
-
Dwork, C.1
Kumar, R.2
Naor, M.3
Sivakumar, D.4
-
10
-
-
34547922052
-
Comparing partial rankings
-
R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee. Comparing partial rankings. SIAM J. Discrete Math., 20(3):628-648, 2006.
-
(2006)
SIAM J. Discrete Math.
, vol.20
, Issue.3
, pp. 628-648
-
-
Fagin, R.1
Kumar, R.2
Mahdian, M.3
Sivakumar, D.4
Vee, E.5
-
11
-
-
1442355935
-
Comparing top k lists
-
R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. SIAM J. Discrete Math., 17(1):134-160, 2003.
-
(2003)
SIAM J. Discrete Math.
, vol.17
, Issue.1
, pp. 134-160
-
-
Fagin, R.1
Kumar, R.2
Sivakumar, D.3
-
14
-
-
34248168069
-
Clustering aggregation
-
A. Gionis, H. Mannila, and P. Tsaparas. Clustering aggregation. ACM Trans. Knowl. Discov. Data, 1(1):4, 2007.
-
(2007)
ACM Trans. Knowl. Discov. Data
, vol.1
, Issue.1
, pp. 4
-
-
Gionis, A.1
Mannila, H.2
Tsaparas, P.3
-
19
-
-
57249091989
-
Deterministic pivoting algorithms for constrained ranking and clustering problems
-
SIAM
-
A. van Zuylen, R. Hegde, K. Jain, and D. P. Williamson. Deterministic pivoting algorithms for constrained ranking and clustering problems. In SODA '07: Proceedings of the 18th Annual ACM-SIAM Sym- posium on Discrete Algorithms, pages 405-414. SIAM, 2007.
-
(2007)
SODA '07: Proceedings of the 18th Annual ACM-SIAM Sym- Posium on Discrete Algorithms
, pp. 405-414
-
-
Van Zuylen, A.1
Hegde, R.2
Jain, K.3
Williamson, D.P.4
-
21
-
-
84923425885
-
Condorcet's theory of voting
-
H. P. Young. Condorcet's theory of voting. Math. Inform. Sci. Humaines, (111):45-59, 1990.
-
(1990)
Math. Inform. Sci. Humaines
, Issue.111
, pp. 45-59
-
-
Young, H.P.1
-
22
-
-
0000381950
-
A consistent extension of condorcet's election principle
-
H. P. Young and A. Levenglick. A consistent extension of Condorcet's election principle. SIAM J. Appl. Math., 35(2):285-300, 1978..
-
(1978)
SIAM J. Appl. Math.
, vol.35
, Issue.2
, pp. 285-300
-
-
Young, H.P.1
Levenglick, A.2
|