-
1
-
-
84959606312
-
A non-cyclic one-relator group all of whose finite quotients are cyclic
-
G. Baumslag. A non-cyclic one-relator group all of whose finite quotients are cyclic. J. Austr. Math. Soc., 10(3-4): 497-498, 1969.
-
(1969)
J. Austr. Math. Soc.
, vol.10
, Issue.3-4
, pp. 497-498
-
-
Baumslag, G.1
-
2
-
-
31444435293
-
Open problems in combinatorial group theory. Second edition
-
American Mathematical Society
-
G. Baumslag, A. G. Myasnikov, and V. Shpilrain. Open problems in combinatorial group theory. Second Edition. In Combinatorial and geometric group theory, volume 296 of Contemporary Mathematics, pages 1-38. American Mathematical Society, 2002.
-
(2002)
Combinatorial and Geometric Group Theory, Volume 296 of Contemporary Mathematics
, pp. 1-38
-
-
Baumslag, G.1
Myasnikov, A.G.2
Shpilrain, V.3
-
3
-
-
0011994346
-
The word problem
-
W. W. Boone. The Word Problem. Annals of Mathematics, 70(2): 207-265, 1959.
-
(1959)
Annals of Mathematics
, vol.70
, Issue.2
, pp. 207-265
-
-
Boone, W.W.1
-
5
-
-
0344489759
-
Über unendliche diskontinuierliche gruppen
-
M. Dehn. Über unendliche diskontinuierliche Gruppen. Math. Ann., 71(1): 116-144, 1911.
-
(1911)
Math. Ann.
, vol.71
, Issue.1
, pp. 116-144
-
-
Dehn, M.1
-
6
-
-
84975730920
-
Geodesic rewriting systems and pregroups
-
O. Bogopolski et al. (eds.) Birkhäuser
-
V. Diekert, A. J. Duncan, and A. G. Myasnikov. Geodesic rewriting systems and pregroups. In O. Bogopolski et al. (eds.), Combinatorial and Geometric Group Theory, Trends in Mathematics, pages 55-91. Birkhäuser, 2010.
-
(2010)
Combinatorial and Geometric Group Theory, Trends in Mathematics
, pp. 55-91
-
-
Diekert, V.1
Duncan, A.J.2
Myasnikov, A.G.3
-
10
-
-
84963019950
-
A finitely generated infinite simple group
-
G. Higman. A finitely generated infinite simple group. J. LMS, 26: 61-64, 1951.
-
(1951)
J. LMS
, vol.26
, pp. 61-64
-
-
Higman, G.1
-
11
-
-
0037673298
-
Generic-case complexity, decision problems in group theory and random walks
-
I. Kapovich, A. G. Miasnikov, P. Schupp, and V. Shpilrain. Generic-case complexity, decision problems in group theory and random walks. J. Algebra, 264: 665-694, 2003.
-
(2003)
J. Algebra
, vol.264
, pp. 665-694
-
-
Kapovich, I.1
Miasnikov, A.G.2
Schupp, P.3
Shpilrain, V.4
-
12
-
-
33749260063
-
Word problems and membership problems on compressed words
-
M. Lohrey. Word problems and membership problems on compressed words. SIAM J. Comput., 35(5): 1210-1240, 2006.
-
(2006)
SIAM J. Comput.
, vol.35
, Issue.5
, pp. 1210-1240
-
-
Lohrey, M.1
-
13
-
-
37249046440
-
Efficient computation in groups via compression
-
V. Diekert et al. (eds.) Springer
-
M. Lohrey and S. Schleimer. Efficient computation in groups via compression. In V. Diekert et al. (eds.), CSR, LNCS, 4649: 249-258. Springer, 2007.
-
(2007)
CSR, LNCS
, vol.4649
, pp. 249-258
-
-
Lohrey, M.1
Schleimer, S.2
-
14
-
-
33746354638
-
Theories of HNN-extensions and amalgamated products
-
M. Bugliesi et al. (eds.) Springer
-
M. Lohrey and G. Sénizergues. Theories of HNN-extensions and amalgamated products. In M. Bugliesi et al. (eds.), ICALP, LNCS, 4052: 504-515. Springer, 2006.
-
(2006)
ICALP, LNCS
, vol.4052
, pp. 504-515
-
-
Lohrey, M.1
Sénizergues, G.2
-
16
-
-
84981446197
-
Pseudo-natural algorithms for finitely generated presentations of monoids and groups
-
K. Madlener and F. Otto. Pseudo-natural algorithms for finitely generated presentations of monoids and groups. J. Symb. Comput., 5: 339-358, 1988.
-
(1988)
J. Symb. Comput.
, vol.5
, pp. 339-358
-
-
Madlener, K.1
Otto, F.2
-
17
-
-
0000331030
-
Das identitätsproblem für gruppen mit einer definierenden relation
-
W. Magnus. Das Identitätsproblem für Gruppen mit einer definierenden Relation. Math. Ann., 106: 295-307, 1932.
-
(1932)
Math. Ann.
, vol.106
, pp. 295-307
-
-
Magnus, W.1
-
18
-
-
84880274948
-
-
To appear in IJAC
-
A. G. Myasnikov, A. Ushakov, and D. W. Won. Power circuits, exponential algebra, and time complexity. ArXiv e-prints, abs/1006.2570, 2010. To appear in IJAC.
-
(2010)
Power Circuits, Exponential Algebra, and Time Complexity. ArXiv E-prints, Abs/1006.2570
-
-
Myasnikov, A.G.1
Ushakov, A.2
Won, D.W.3
-
19
-
-
80052659106
-
The word problem in the baumslag group with a non-elementary dehn function is polynomial time decidable
-
A. G. Myasnikov, A. Ushakov, and D. W. Won. The Word Problem in the Baumslag group with a non-elementary Dehn function is polynomial time decidable. Journal of Algebra, 345(1): 324-342, 2011.
-
(2011)
Journal of Algebra
, vol.345
, Issue.1
, pp. 324-342
-
-
Myasnikov, A.G.1
Ushakov, A.2
Won, D.W.3
-
21
-
-
0002996665
-
On the algorithmic unsolvability of the word problem in group theory
-
In Russian
-
P. S. Novikov. On the algorithmic unsolvability of the word problem in group theory. Trudy Mat. Inst. Steklov, pages 1-143, 1955. In Russian.
-
(1955)
Trudy Mat. Inst. Steklov
, pp. 1-143
-
-
Novikov, P.S.1
-
22
-
-
0001778763
-
Almost every group is hyperbolic
-
A. Y. Ol'shanskii. Almost every group is hyperbolic. Int. J. Alg. Comp., 2: 1-17, 1992.
-
(1992)
Int. J. Alg. Comp.
, vol.2
, pp. 1-17
-
-
Ol'shanskii, A.Y.1
-
23
-
-
84981454318
-
Separating the intrinsic complexity and the derivational complexity of the word problem for finitely presented groups
-
F. Otto, D. E. Cohen, and K. Madlener. Separating the intrinsic complexity and the derivational complexity of the word problem for finitely presented groups. Math. Log. Q., 39: 143-157, 1993.
-
(1993)
Math. Log. Q.
, vol.39
, pp. 143-157
-
-
Otto, F.1
Cohen, D.E.2
Madlener, K.3
-
24
-
-
2942683777
-
Isoparametric function of the baumslag-gersten group
-
Russian
-
A. N. Platonov. Isoparametric function of the Baumslag-Gersten group. Vestnik Moskov. Univ. Ser. I Mat. Mekh., 3: 12-17, 2004. Russian.
-
(2004)
Vestnik Moskov. Univ. Ser. i Mat. Mekh.
, vol.3
, pp. 12-17
-
-
Platonov, A.N.1
-
26
-
-
0036761089
-
Isoperimetric and isodiametric functions of groups
-
M. V. Sapir, J.-C. Birget, and E. Rips. Isoperimetric and Isodiametric Functions of Groups. Ann. Math., 156: 345-466, 2002.
-
(2002)
Ann. Math.
, vol.156
, pp. 345-466
-
-
Sapir, M.V.1
Birget, J.-C.2
Rips, E.3
-
27
-
-
55349141807
-
Polynomial-time word problems
-
S. Schleimer. Polynomial-time word problems. Comm. Math. Helv., 83: 741-765, 2008.
-
(2008)
Comm. Math. Helv.
, vol.83
, pp. 741-765
-
-
Schleimer, S.1
|