-
1
-
-
0025885661
-
Biased estimation of the odds ratio in case-control studies due to the use of ad hoc methods of correcting for missing values for confounding variables
-
VachW, Blettner M. Biased estimation of the odds ratio in case-control studies due to the use of ad hoc methods of correcting for missing values for confounding variables. Am J Epidemiol. 1991;134(8): 895-907.
-
(1991)
Am J Epidemiol.
, vol.134
, Issue.8
, pp. 895-907
-
-
Vach, W.1
Blettner, M.2
-
2
-
-
0029584587
-
A critical look at methods for handlingmissing covariates in epidemiologic regression analyses
-
Greenland S, FinkleWD. A critical look at methods for handlingmissing covariates in epidemiologic regression analyses. Am J Epidemiol. 1995;142(12):1255-1264.
-
(1995)
Am J Epidemiol.
, vol.142
, Issue.12
, pp. 1255-1264
-
-
Greenland, S.1
Finkle, W.D.2
-
5
-
-
78649551872
-
Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values
-
White IR, Carlin JB. Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values. Stat Med. 2010;29(28):2920-2931.
-
(2010)
Stat Med.
, vol.29
, Issue.28
, pp. 2920-2931
-
-
White, I.R.1
Carlin, J.B.2
-
6
-
-
0036224591
-
Impact ofmissing data due to selective dropouts in cohort studies and clinical trials
-
Touloumi G, Pocock SJ, Babiker AG, Darbyshire JH. Impact ofmissing data due to selective dropouts in cohort studies and clinical trials. Epidemiology. 2002;13(3):347-355.
-
(2002)
Epidemiology.
, vol.13
, Issue.3
, pp. 347-355
-
-
Touloumi, G.1
Pocock, S.J.2
Babiker, A.G.3
Darbyshire, J.H.4
-
7
-
-
77955896455
-
Strategies for multiple imputation in longitudinal studies
-
SprattM, Carpenter J, Sterne JA, et al. Strategies for multiple imputation in longitudinal studies. Am J Epidemiol. 2010;172(4):478-487.
-
(2010)
Am J Epidemiol.
, vol.172
, Issue.4
, pp. 478-487
-
-
Spratt, M.1
Carpenter, J.2
Sterne, J.A.3
-
8
-
-
34347396774
-
Multiple imputation: Current perspectives
-
Kenward MG, Carpenter J. Multiple imputation: current perspectives. Stat Methods Med Res. 2007;16(3):199-218.
-
(2007)
Stat Methods Med Res.
, vol.16
, Issue.3
, pp. 199-218
-
-
Kenward, M.G.1
Carpenter, J.2
-
9
-
-
84950455641
-
Regression with missing X's: A review
-
Little RJA. Regression with missing X's: a review. J AmStat Assoc. 1992;87(12):1227-1237.
-
(1992)
J AmStat Assoc.
, vol.87
, Issue.12
, pp. 1227-1237
-
-
Little, R.J.A.1
-
10
-
-
0032960273
-
Multiple imputation: A primer
-
Schafer JL. Multiple imputation: a primer. Stat Methods Med Res. 1999;8(1):3-15.
-
(1999)
Stat Methods Med Res.
, vol.8
, Issue.1
, pp. 3-15
-
-
Schafer, J.L.1
-
11
-
-
33748520872
-
Review: A gentle introduction to imputation ofmissing values
-
Donders AR, van der Heijden GJ, Stijnen T, Moons KG. Review: a gentle introduction to imputation ofmissing values. J Clin Epidemiol. 2006;59(10):1087-1091.
-
(2006)
J Clin Epidemiol.
, vol.59
, Issue.10
, pp. 1087-1091
-
-
Donders, A.R.1
Van Der Heijden, G.J.2
Stijnen, T.3
Moons, K.G.4
-
13
-
-
0035755636
-
A comparison of inclusive and restrictive strategies in modern missing data procedures
-
Collins LM, Schafer JL, Kam CM. A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychol Methods. 2001;6(4):330-351.
-
(2001)
Psychol Methods.
, vol.6
, Issue.4
, pp. 330-351
-
-
Collins, L.M.1
Schafer, J.L.2
Kam, C.M.3
-
14
-
-
33748709502
-
Using the outcome for imputation ofmissing predictor values was preferred
-
Moons KG, Donders RA, Stijnen T, Harrell FE Jr. Using the outcome for imputation ofmissing predictor values was preferred. J Clin Epidemiol. 2006;59(10):1092-1101.
-
(2006)
J Clin Epidemiol.
, vol.59
, Issue.10
, pp. 1092-1101
-
-
Moons, K.G.1
Donders, R.A.2
Stijnen, T.3
Harrell Jr., F.E.4
-
15
-
-
68249114452
-
Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls
-
doi:10. 1136/bmj. b2393
-
Sterne JAC, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. doi:10. 1136/bmj. b2393.
-
(2009)
BMJ
, vol.338
-
-
Sterne, J.A.C.1
White, I.R.2
Carlin, J.B.3
-
16
-
-
0025801348
-
Multiple imputation in health-care databases: An overview and some applications
-
Rubin DB, Schenker N. Multiple imputation in health-care databases: an overview and some applications. Stat Med. 1991;10(4):585-598.
-
(1991)
Stat Med.
, vol.10
, Issue.4
, pp. 585-598
-
-
Rubin, D.B.1
Schenker, N.2
-
17
-
-
2142647296
-
What do we do with missing data? some options for analysis of incomplete data
-
Raghunathan TE. What do we do with missing data? some options for analysis of incomplete data. Annu Rev Public Health. 2004;25:99-117.
-
(2004)
Annu Rev Public Health.
, vol.25
, pp. 99-117
-
-
Raghunathan, T.E.1
-
18
-
-
84878516633
-
Review of inverse probability weighting for dealing with missing data [published online January 10, 2011]
-
doi:10. 1177/0962280210395740
-
Seaman SR, White IR. Review of inverse probability weighting for dealing with missing data [published online January 10, 2011]. Stat Methods Med Res. doi:10. 1177/0962280210395740.
-
Stat Methods Med Res.
-
-
Seaman, S.R.1
White, I.R.2
-
19
-
-
84874501270
-
On weighting approaches for missing data
-
doi:10. 1177/0962280211403597
-
Li L, Shen C, Li X, Robins JM. On weighting approaches for missing data. Stat Methods Med Res. 2013;22(1):14-30. doi:10. 1177/0962280211403597.
-
(2013)
Stat Methods Med Res.
, vol.22
, Issue.1
, pp. 14-30
-
-
Li, L.1
Shen, C.2
Li, X.3
Robins, J.M.4
-
20
-
-
84864817853
-
Missing covariate data in clinical research: When and when not to use themissing-indicator method for analysis
-
Groenwold RH, White IR, Donders AR, Carpenter JR, Altman DG, Moons KG. Missing covariate data in clinical research: when and when not to use themissing-indicator method for analysis. CMAJ. 2012;184(11):1265-1269.
-
(2012)
CMAJ
, vol.184
, Issue.11
, pp. 1265-1269
-
-
Groenwold, R.H.1
White, I.R.2
Donders, A.R.3
Carpenter, J.R.4
Altman, D.G.5
Moons, K.G.6
-
22
-
-
78651256743
-
Multiple imputation using chained equations: Issues and guidance for practice
-
White IR, Royston P, Wood AM. Multiple imputation using chained equations: issues and guidance for practice. Stat Med. 2011;30(4): 377-399.
-
(2011)
Stat Med.
, vol.30
, Issue.4
, pp. 377-399
-
-
White, I.R.1
Royston, P.2
Wood, A.M.3
-
23
-
-
84971580244
-
Absence of evidence is not evidence of absence
-
Altman DG, Bland JM. Absence of evidence is not evidence of absence. BMJ. 1995;311(7003):485.
-
(1995)
BMJ
, vol.311
, Issue.7003
, pp. 485
-
-
Altman, D.G.1
Bland, J.M.2
-
24
-
-
75849144677
-
P values vs estimates of association with confidence intervals
-
Cummings P, Koepsell TD. P values vs estimates of association with confidence intervals. Arch Pediatr Adolesc Med. 2010;164(2):193-196.
-
(2010)
Arch Pediatr Adolesc Med.
, vol.164
, Issue.2
, pp. 193-196
-
-
Cummings, P.1
Koepsell, T.D.2
-
25
-
-
83655163679
-
Berkson's bias, selection bias, and missing data
-
Westreich D. Berkson's bias, selection bias, and missing data. Epidemiology. 2012;23(1):159-164.
-
(2012)
Epidemiology.
, vol.23
, Issue.1
, pp. 159-164
-
-
Westreich, D.1
-
26
-
-
3042807973
-
Imputations of missing values in practice: Results from imputations of serum cholesterol in 28 cohort studies
-
Barzi F, WoodwardM. Imputations of missing values in practice: results from imputations of serum cholesterol in 28 cohort studies. Am J Epidemiol. 2004;160(1):34-45.
-
(2004)
Am J Epidemiol.
, vol.160
, Issue.1
, pp. 34-45
-
-
Barzi, F.1
Woodward, M.2
-
27
-
-
34347372013
-
A comparison of imputation techniques for handlingmissing predictor values in a risk model with a binary outcome
-
Ambler G, Omar RZ, Royston P. A comparison of imputation techniques for handlingmissing predictor values in a risk model with a binary outcome. Stat Methods Med Res. 2007;16(3): 277-298.
-
(2007)
Stat Methods Med Res.
, vol.16
, Issue.3
, pp. 277-298
-
-
Ambler, G.1
Omar, R.Z.2
Royston, P.3
-
28
-
-
33744830564
-
Can one assess whether missing data are missing at random in medical studies?
-
Potthoff RF, Tudor GE, Pieper KS, Hasselblad V. Can one assess whether missing data are missing at random in medical studies? Stat Methods Med Res. 2006;15(3):213-234.
-
(2006)
Stat Methods Med Res
, vol.15
, Issue.3
, pp. 213-234
-
-
Potthoff, R.F.1
Tudor, G.E.2
Pieper, K.S.3
Hasselblad, V.4
-
29
-
-
79551622288
-
Addressing missing data in clinical trials
-
Fleming TR. Addressing missing data in clinical trials. Ann Intern Med. 2011;154(2):113-117.
-
(2011)
Ann Intern Med.
, vol.154
, Issue.2
, pp. 113-117
-
-
Fleming, T.R.1
|