메뉴 건너뛰기




Volumn , Issue , 2012, Pages 907-918

Which distance metric is right: An evolutionary k-means view

Author keywords

Distance metric; Document clustering; Genetic algorithm; K means

Indexed keywords

CLUSTER ANALYSIS; DATA MINING; GENETIC ALGORITHMS;

EID: 84880225084     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972825.78     Document Type: Conference Paper
Times cited : (8)

References (21)
  • 2
    • 34547681969 scopus 로고    scopus 로고
    • GAPS: A clustering method using a newpoint symmetry-based distance measure
    • S. Bandyopadhyay and S. Saha. GAPS: A clustering method using a newpoint symmetry-based distance measure. Pat- Tern Recognition, 40:3430-3451, 2007.
    • (2007) Pat- Tern Recognition , vol.40 , pp. 3430-3451
    • Bandyopadhyay, S.1    Saha, S.2
  • 4
    • 9444279511 scopus 로고    scopus 로고
    • Doc- ument clustering into an unknown number of clusters using a genetic algorithm
    • A. Casillas, M. González de Lena, and R. Martínez. Doc- ument clustering into an unknown number of clusters using a genetic algorithm. In Text, Speech and Dialogue, pages 43-49, 2003.
    • (2003) Text, Speech and Dialogue , pp. 43-49
    • Casillas, A.1    De Lena, M.G.2    Martínez, R.3
  • 6
    • 0034824884 scopus 로고    scopus 로고
    • Concept decompositions for large sparse text data using clustering
    • I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text data using clustering. Machine Learning, 42(1):143-175, 2001.
    • (2001) Machine Learning , vol.42 , Issue.1 , pp. 143-175
    • Dhillon, I.S.1    Modha, D.S.2
  • 7
    • 37549018049 scopus 로고    scopus 로고
    • Top 10 algorithms in data mining
    • X. Wu et al. Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1):1-37, 2008.
    • (2008) Knowledge and Information Systems , vol.14 , Issue.1 , pp. 1-37
    • Wu, X.1
  • 8
    • 84880245758 scopus 로고    scopus 로고
    • Multi-focal learning and its application to customer service support
    • Y. Ge et al. Multi-focal Learning and Its Application to Customer Service Support. In KDD'09.
    • KDD'09
    • Ge, Y.1
  • 10
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond k-means
    • A. K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31:651-666, 2010.
    • (2010) Pattern Recognition Letters , vol.31 , pp. 651-666
    • Jain, A.K.1
  • 14
    • 0030189865 scopus 로고    scopus 로고
    • In search of optimal clus- Ters using genetic algorithms
    • C.A. Murthy and N. Chowdhury. In search of optimal clus- Ters using genetic algorithms. Pattern Recognition Letters, 17(8):825-832, 1996.
    • (1996) Pattern Recognition Letters , vol.17 , Issue.8 , pp. 825-832
    • Murthy, C.A.1    Chowdhury, N.2
  • 15
    • 9444220002 scopus 로고    scopus 로고
    • Learning a distance metric from relative comparisons
    • M. Schultz and T. Joachims. Learning a distance metric from relative comparisons. In NIPS'03.
    • NIPS'03
    • Schultz, M.1    Joachims, T.2
  • 19
    • 84880193748 scopus 로고    scopus 로고
    • Adapting the right measures for k-means clustering
    • J. Wu, H. Xiong, and J. Chen. Adapting the right measures for k-means clustering. In KDD'09.
    • KDD'09
    • Wu, J.1    Xiong, H.2    Chen, J.3
  • 20
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning, with application to clustering with side- information
    • E.P. Xing, A.Y. Ng, M.I. Jordan, and S. Russell. Distance metric learning, with application to clustering with side- information. In NIPS'02.
    • NIPS'02
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.4
  • 21
    • 3543085722 scopus 로고    scopus 로고
    • Empirical and theoretical compar- isons of selected criterion functions for document clustering
    • Y. Zhao and G. Karypis. Empirical and theoretical compar- isons of selected criterion functions for document clustering. Machine Learning, 55(3):311-331, 2004.
    • (2004) Machine Learning , vol.55 , Issue.3 , pp. 311-331
    • Zhao, Y.1    Karypis, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.