메뉴 건너뛰기




Volumn 66, Issue 2, 2013, Pages 135-146

Entropy of fractal systems

Author keywords

Fractal dimension; Fractal geometry; Fractal measure; Fractal physics; Kolmogorov entropy; R nyi entropy; Shannon entropy; Thermodynamic entropy

Indexed keywords

FRACTAL GEOMETRY; FRACTAL MEASURES; KOLMOGOROV ENTROPIES; SHANNON ENTROPY; THERMODYNAMIC ENTROPY;

EID: 84880216441     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2013.01.017     Document Type: Article
Times cited : (89)

References (18)
  • 1
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • 623-656
    • C.E. Shannon A mathematical theory of communication Bell Syst. Tech. J. 27 1948 379 423 623-656
    • (1948) Bell Syst. Tech. J. , vol.27 , pp. 379-423
    • Shannon, C.E.1
  • 3
    • 84860570454 scopus 로고    scopus 로고
    • Classifying entropy measures
    • 10.3390/sym3030487
    • A. Garrido Classifying entropy measures Symmetry 3 2011 487 502 10.3390/sym3030487
    • (2011) Symmetry , vol.3 , pp. 487-502
    • Garrido, A.1
  • 4
    • 0020330109 scopus 로고
    • Measures of uncertainty and information based on possibility distributions
    • M. Higashi, and G.J. Klir Measures of uncertainty and information based on possibility distributions Int. J. General Syst. 9 1982 43 58
    • (1982) Int. J. General Syst. , vol.9 , pp. 43-58
    • Higashi, M.1    Klir, G.J.2
  • 6
    • 33646981873 scopus 로고
    • Characterization of strange attractors
    • 10.1103/PhysRevLett.50.346
    • P. Grassberger, and I. Procaccia Characterization of strange attractors Physical Review Letters 50 5 1983 346 349 10.1103/PhysRevLett.50.346
    • (1983) Physical Review Letters , vol.50 , Issue.5 , pp. 346-349
    • Grassberger, P.1    Procaccia, I.2
  • 7
    • 4243243202 scopus 로고
    • Estimation of the Kolmogorov entropy from a chaotic signal
    • 10.1103/PhysRevA.28.2591
    • P. Grassberger, and I. Procaccia Estimation of the Kolmogorov entropy from a chaotic signal Phys. Rev. A 28 4 1983 2591 2593 10.1103/PhysRevA.28.2591
    • (1983) Phys. Rev. A , vol.28 , Issue.4 , pp. 2591-2593
    • Grassberger, P.1    Procaccia, I.2
  • 10
    • 5444244687 scopus 로고
    • How long is the coast of britain? statistical self-similarity and fractional dimension
    • 10.1126/science.156.3775.636
    • B.B. Mandelbrot How long is the coast of britain? statistical self-similarity and fractional dimension Science, New Series 156 1967 636 638 10.1126/science.156.3775.636
    • (1967) Science, New Series , vol.156 , pp. 636-638
    • Mandelbrot, B.B.1
  • 12
    • 0037410893 scopus 로고    scopus 로고
    • Fractal-Cantorian geometry, Hausdorff dimension and the fundamental laws of physics
    • O. Zmeskal, M. Nezadal, and M. Buchnicek Fractal-Cantorian geometry, Hausdorff dimension and the fundamental laws of physics Chaos, Solitons & Fractals 17 2003 113 119
    • (2003) Chaos, Solitons & Fractals , vol.17 , pp. 113-119
    • Zmeskal, O.1    Nezadal, M.2    Buchnicek, M.3
  • 13
    • 14744267957 scopus 로고    scopus 로고
    • A fractal set is one for which the fractal (Hausdorff-Besicovitch) dimension strictly exceeds the topological dimension
    • Springer 978-0-387-20158-0
    • B.B. Mandelbrot A fractal set is one for which the fractal (Hausdorff-Besicovitch) dimension strictly exceeds the topological dimension Fractals and Chaos 2004 Springer 978-0-387-20158-0
    • (2004) Fractals and Chaos
    • Mandelbrot, B.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.