-
1
-
-
84856043672
-
A mathematical theory of communication
-
623-656
-
C.E. Shannon A mathematical theory of communication Bell Syst. Tech. J. 27 1948 379 423 623-656
-
(1948)
Bell Syst. Tech. J.
, vol.27
, pp. 379-423
-
-
Shannon, C.E.1
-
3
-
-
84860570454
-
Classifying entropy measures
-
10.3390/sym3030487
-
A. Garrido Classifying entropy measures Symmetry 3 2011 487 502 10.3390/sym3030487
-
(2011)
Symmetry
, vol.3
, pp. 487-502
-
-
Garrido, A.1
-
4
-
-
0020330109
-
Measures of uncertainty and information based on possibility distributions
-
M. Higashi, and G.J. Klir Measures of uncertainty and information based on possibility distributions Int. J. General Syst. 9 1982 43 58
-
(1982)
Int. J. General Syst.
, vol.9
, pp. 43-58
-
-
Higashi, M.1
Klir, G.J.2
-
6
-
-
33646981873
-
Characterization of strange attractors
-
10.1103/PhysRevLett.50.346
-
P. Grassberger, and I. Procaccia Characterization of strange attractors Physical Review Letters 50 5 1983 346 349 10.1103/PhysRevLett.50.346
-
(1983)
Physical Review Letters
, vol.50
, Issue.5
, pp. 346-349
-
-
Grassberger, P.1
Procaccia, I.2
-
7
-
-
4243243202
-
Estimation of the Kolmogorov entropy from a chaotic signal
-
10.1103/PhysRevA.28.2591
-
P. Grassberger, and I. Procaccia Estimation of the Kolmogorov entropy from a chaotic signal Phys. Rev. A 28 4 1983 2591 2593 10.1103/PhysRevA.28.2591
-
(1983)
Phys. Rev. A
, vol.28
, Issue.4
, pp. 2591-2593
-
-
Grassberger, P.1
Procaccia, I.2
-
9
-
-
0008407372
-
-
Cambridge ISBN 978-0-521-38297-7; ISBN 978-0-521-38298-4
-
L.F. Richardson, O.M. Ashford, H. Charnock, P.G. Drazin, J.C.R. Hunt, P. Smoker, I. Sutherland, The Collected Papers of Lewis Fry Richardson, Cambridge, 1993. ISBN 978-0-521-38297-7; ISBN 978-0-521-38298-4.
-
(1993)
The Collected Papers of Lewis Fry Richardson
-
-
Richardson, L.F.1
Ashford, O.M.2
Charnock, H.3
Drazin, P.G.4
Hunt, J.C.R.5
Smoker, P.6
Sutherland, I.7
-
10
-
-
5444244687
-
How long is the coast of britain? statistical self-similarity and fractional dimension
-
10.1126/science.156.3775.636
-
B.B. Mandelbrot How long is the coast of britain? statistical self-similarity and fractional dimension Science, New Series 156 1967 636 638 10.1126/science.156.3775.636
-
(1967)
Science, New Series
, vol.156
, pp. 636-638
-
-
Mandelbrot, B.B.1
-
12
-
-
0037410893
-
Fractal-Cantorian geometry, Hausdorff dimension and the fundamental laws of physics
-
O. Zmeskal, M. Nezadal, and M. Buchnicek Fractal-Cantorian geometry, Hausdorff dimension and the fundamental laws of physics Chaos, Solitons & Fractals 17 2003 113 119
-
(2003)
Chaos, Solitons & Fractals
, vol.17
, pp. 113-119
-
-
Zmeskal, O.1
Nezadal, M.2
Buchnicek, M.3
-
13
-
-
14744267957
-
A fractal set is one for which the fractal (Hausdorff-Besicovitch) dimension strictly exceeds the topological dimension
-
Springer 978-0-387-20158-0
-
B.B. Mandelbrot A fractal set is one for which the fractal (Hausdorff-Besicovitch) dimension strictly exceeds the topological dimension Fractals and Chaos 2004 Springer 978-0-387-20158-0
-
(2004)
Fractals and Chaos
-
-
Mandelbrot, B.B.1
-
15
-
-
33846698355
-
Use of the image analysis to study growth and division of yeastcells
-
K. Tomankova, P. Jerabkova, O. Zmeskal, M. Vesela, and J. Haderka Use of the image analysis to study growth and division of yeastcells J. Imaging Sci. Technology. 50 2006 583 589
-
(2006)
J. Imaging Sci. Technology.
, vol.50
, pp. 583-589
-
-
Tomankova, K.1
Jerabkova, P.2
Zmeskal, O.3
Vesela, M.4
Haderka, J.5
|