메뉴 건너뛰기




Volumn , Issue , 2010, Pages 548-558

Radius plots for mining tera-byte scale graphs: Algorithms, patterns, and observations

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; GRAPHIC METHODS; SPACE DIVISION MULTIPLE ACCESS; WEB CRAWLER;

EID: 84880119194     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972801.48     Document Type: Conference Paper
Times cited : (41)

References (39)
  • 1
    • 77956260197 scopus 로고    scopus 로고
    • Gconnect: A connectivity index for massive disk-resident graphs
    • C. C. Aggarwal, Y. Xie, and P. S. Yu. Gconnect: A connectivity index for massive disk-resident graphs. PVLDB, 2009.
    • (2009) PVLDB
    • Aggarwal, C.C.1    Xie, Y.2    Yu, P.S.3
  • 2
    • 0033539175 scopus 로고    scopus 로고
    • Diameter of the world wide web
    • R. Albert, H. Jeong, and A.-L. Barabasi. Diameter of the world wide web. Nature, (401):130-131, 1999.
    • (1999) Nature , Issue.401 , pp. 130-131
    • Albert, R.1    Jeong, H.2    Barabasi, A.-L.3
  • 4
    • 54949115045 scopus 로고    scopus 로고
    • A graph-theoretic analysis of the human protein-interaction network using mul-ticore parallel algorithms
    • D. A. Bader and K. Madduri. A graph-theoretic analysis of the human protein-interaction network using mul-ticore parallel algorithms. Parallel Comput., 2008.
    • (2008) Parallel Comput.
    • Bader, D.A.1    Madduri, K.2
  • 5
    • 61649118133 scopus 로고    scopus 로고
    • Efficient semi-streaming algorithms for local triangle counting in massive graphs
    • L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient semi-streaming algorithms for local triangle counting in massive graphs. In KDD, 2008.
    • (2008) KDD
    • Becchetti, L.1    Boldi, P.2    Castillo, C.3    Gionis, A.4
  • 12
    • 70350647580 scopus 로고    scopus 로고
    • Pervasive parallelism in data mining: Dataflow solution to co-clustering large and sparse netflix data
    • S. Daruru, N. M. Marin, M. Walker, and J. Ghosh. Pervasive parallelism in data mining: dataflow solution to co-clustering large and sparse netflix data. In KDD, 2009.
    • (2009) KDD
    • Daruru, S.1    Marin, N.M.2    Walker, M.3    Ghosh, J.4
  • 13
    • 84880114573 scopus 로고    scopus 로고
    • Weighted graph cuts without eigenvectors a multilevel approach
    • I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors a multilevel approach. IEEE TPAMT, 2007.
    • (2007) IEEE TPAMT
    • Dhillon, I.S.1    Guan, Y.2    Kulis, B.3
  • 14
  • 16
    • 84875163483 scopus 로고    scopus 로고
    • Parallel computation of the diameter of a graph
    • J.-A. Ferrez, K. Fukuda, and T. Liebling. Parallel computation of the diameter of a graph. In HPCSA, 1998.
    • (1998) HPCSA
    • Ferrez, J.-A.1    Fukuda, K.2    Liebling, T.3
  • 18
    • 84944315044 scopus 로고    scopus 로고
    • Approximate query processing: Taming the terabytes
    • M. N. Garofalakis and P. B. Gibbon. Approximate query processing: Taming the terabytes. VLDB, 2001.
    • (2001) VLDB
    • Garofalakis, M.N.1    Gibbon, P.B.2
  • 19
    • 63149115819 scopus 로고    scopus 로고
    • Data mining using high performance data clouds: Experimental studies using sector and sphere
    • R. L. Grossman and Y. Gu. Data mining using high performance data clouds: experimental studies using sector and sphere. KDD, 2008.
    • (2008) KDD
    • Grossman, R.L.1    Gu, Y.2
  • 20
    • 77951152705 scopus 로고    scopus 로고
    • Pegasus: A peta-scale graph mining system - Implementation and observations
    • U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus: A peta-scale graph mining system - implementation and observations. ICDM, 2009.
    • (2009) ICDM
    • Kang, U.1    Tsourakakis, C.E.2    Faloutsos, C.3
  • 21
    • 0032650115 scopus 로고    scopus 로고
    • Parallel multilevel k-way partitioning for irregular graphs
    • G. Karypis and V. Kumar. Parallel multilevel k-way partitioning for irregular graphs. SIAM Review, 41(2):278-300, 1999.
    • (1999) SIAM Review , vol.41 , Issue.2 , pp. 278-300
    • Karypis, G.1    Kumar, V.2
  • 22
    • 72749092433 scopus 로고    scopus 로고
    • Top-k correlative graph mining
    • Y. Ke, J. Cheng, and J. X. Yu. Top-k correlative graph mining. SDM, 2009.
    • (2009) SDM
    • Ke, Y.1    Cheng, J.2    Yu, J.X.3
  • 23
    • 67049173946 scopus 로고    scopus 로고
    • Scalable tensor decompositions for multi-aspect data mining
    • T. G. Kolda and J. Sun. Scalable tensor decompositions for multi-aspect data mining. In ICDM, 2008.
    • (2008) ICDM
    • Kolda, T.G.1    Sun, J.2
  • 24
    • 33646414177 scopus 로고    scopus 로고
    • Realistic, mathematically tractable graph generation and evolution, using kronecker multiplication
    • J. Leskovec, D. Chakrabarti, J. M. Kleinberg, and C. Faloutsos. Realistic, mathematically tractable graph generation and evolution, using kronecker multiplication. PKDD, pages 133-145, 2005.
    • (2005) PKDD , pp. 133-145
    • Leskovec, J.1    Chakrabarti, D.2    Kleinberg, J.M.3    Faloutsos, C.4
  • 25
    • 32344436210 scopus 로고    scopus 로고
    • Graphs over time: Densification laws, shrinking diameters and possible explanations
    • J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densification laws, shrinking diameters and possible explanations. In KDD, 2005.
    • (2005) KDD
    • Leskovec, J.1    Kleinberg, J.2    Faloutsos, C.3
  • 26
    • 52949106331 scopus 로고    scopus 로고
    • Statistical properties of community structure in large social and information networks
    • J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Statistical properties of community structure in large social and information networks. In WWW '08, 2008.
    • (2008) WWW '08
    • Leskovec, J.1    Lang, K.J.2    Dasgupta, A.3    Mahoney, M.W.4
  • 27
    • 38148998795 scopus 로고
    • Efficient parallel algorithms for some graph theory problems
    • J. Ma and S. Ma. Efficient parallel algorithms for some graph theory problems. JCST, 1993.
    • (1993) JCST
    • Ma, J.1    Ma, S.2
  • 28
    • 65449119267 scopus 로고    scopus 로고
    • Weighted graphs and disconnected components: Patterns and a generator
    • M. Mcglohon, L. Akoglu, and C. Faloutsos. Weighted graphs and disconnected components: patterns and a generator. KDD, 2008.
    • (2008) KDD
    • Mcglohon, M.1    Akoglu, L.2    Faloutsos, C.3
  • 29
    • 0242625288 scopus 로고    scopus 로고
    • Anf: A fast and scalable tool for data mining in massive graphs
    • C. R. Palmer, P. B. Gibbons, and C. Faloutsos. Anf: a fast and scalable tool for data mining in massive graphs. KDD, pages 81-90, 2002.
    • (2002) KDD , pp. 81-90
    • Palmer, C.R.1    Gibbons, P.B.2    Faloutsos, C.3
  • 30
    • 78649238702 scopus 로고    scopus 로고
    • Disco: Distributed co-clustering with map-reduce
    • S. Papadimitriou and J. Sun. Disco: Distributed co-clustering with map-reduce. ICDM, 2008.
    • (2008) ICDM
    • Papadimitriou, S.1    Sun, J.2
  • 33
    • 70350647698 scopus 로고    scopus 로고
    • Scalable graph clustering using stochastic flows: Applications to community discovery
    • V. Satuluri and S. Parthasarathy. Scalable graph clustering using stochastic flows: applications to community discovery. KDD, 2009.
    • (2009) KDD
    • Satuluri, V.1    Parthasarathy, S.2
  • 34
    • 0022810869 scopus 로고
    • A parallel algorithm to compute the shortest paths and diameter of a graph and its vlsi implementation
    • B. P. Sinha, B. B. Bhattacharya, S. Ghose, and P. K. Srimani. A parallel algorithm to compute the shortest paths and diameter of a graph and its vlsi implementation. IEEE Trans. Comput., 1986.
    • (1986) IEEE Trans. Comput.
    • Sinha, B.P.1    Bhattacharya, B.B.2    Ghose, S.3    Srimani, P.K.4
  • 37
    • 12244251830 scopus 로고    scopus 로고
    • Scalable mining of large disk-based graph databases
    • C. Wang, W. Wang, J. Pei, Y. Zhu, and B. Shi. Scalable mining of large disk-based graph databases. KDD, 2004.
    • (2004) KDD
    • Wang, C.1    Wang, W.2    Pei, J.3    Zhu, Y.4    Shi, B.5
  • 38
    • 78149333073 scopus 로고    scopus 로고
    • Gspan: Graph-based substructure pattern mining
    • X. Yan and J. Han. gspan: Graph-based substructure pattern mining. ICDM, 2002.
    • (2002) ICDM
    • Yan, X.1    Han, J.2
  • 39
    • 70350679109 scopus 로고    scopus 로고
    • Learning patterns in the dynamics of biological networks
    • C. H. You, L. B. Holder, and D. J. Cook. Learning patterns in the dynamics of biological networks. In KDD, 2009.
    • (2009) KDD
    • You, C.H.1    Holder, L.B.2    Cook, D.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.