메뉴 건너뛰기




Volumn 36, Issue 3, 2013, Pages 747-755

Two-point boundary value problems for fractional differential equations at resonance

Author keywords

Boundary value problem; Coincidence degree theory; Fractional differential equations; Resonance

Indexed keywords


EID: 84880103285     PISSN: 01266705     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (18)

References (21)
  • 1
    • 77954144417 scopus 로고    scopus 로고
    • Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations
    • R. P. Agarwal, D. O'Regan and S. Staněk, Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations, J. Math. Anal. Appl. 371 (2010), no. 1, 57-68.
    • (2010) J. Math. Anal. Appl , vol.371 , Issue.1 , pp. 57-68
    • Agarwal, R.P.1    O'Regan, D.2    Staněk, S.3
  • 2
    • 25144460994 scopus 로고    scopus 로고
    • Positive solutions for boundary value problem of nonlinear fractional differential equation
    • Z. Bai and H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. 311 (2005), no. 2, 495-505.
    • (2005) J. Math. Anal. Appl , vol.311 , Issue.2 , pp. 495-505
    • Bai, Z.1    Lü, H.2
  • 3
    • 67349155890 scopus 로고    scopus 로고
    • Boundary value problems for differential equations with frac-tional order and nonlocal conditions
    • M. Benchohra, S. Hamani and S. K. Ntouyas, Boundary value problems for differential equations with frac-tional order and nonlocal conditions, Nonlinear Anal. 71 (2009), no. 7-8, 2391-2396.
    • (2009) Nonlinear Anal , vol.71 , Issue.7-8 , pp. 2391-2396
    • Benchohra, M.1    Hamani, S.2    Ntouyas, S.K.3
  • 4
    • 0002795136 scopus 로고    scopus 로고
    • On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity
    • in: F. Keil, W. Mackens, H. Voss and J. Werther (Eds.), Springer-Verlag, Heidelberg
    • K. Diethelm and A. D. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity, in: F. Keil, W. Mackens, H. Voss and J. Werther (Eds.), Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, Springer-Verlag, Heidelberg, 1999, pp. 217-224.
    • (1999) Scientific Computing In Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties , pp. 217-224
    • Diethelm, K.1    Freed, A.D.2
  • 5
    • 0001367342 scopus 로고    scopus 로고
    • Solvability of three point boundary value problems at resonance
    • W. Feng and J. R. L. Webb, Solvability of three point boundary value problems at resonance, Nonlinear Anal. 30 (1997), no. 6, 3227-3238.
    • (1997) Nonlinear Anal , vol.30 , Issue.6 , pp. 3227-3238
    • Feng, W.1    Webb, J.R.L.2
  • 6
    • 44949282247 scopus 로고
    • Damping description involving fractional operators
    • L. Gaul, P. Klein and S. Kempfle, Damping description involving fractional operators, Mech. Syst. Signal Process. 5 (1991) 81-88.
    • (1991) Mech. Syst. Signal Process , vol.5 , pp. 81-88
    • Gaul, L.1    Klein, P.2    Kempfle, S.3
  • 7
    • 0028878140 scopus 로고
    • A fractional calculus approach of self-similar protein dynamics
    • W. G. Glockle and T. F. Nonnenmacher, A fractional calculus approach of self-similar protein dynamics, Biophys. J. 68 (1995) 46-53.
    • (1995) Biophys. J , vol.68 , pp. 46-53
    • Glockle, W.G.1    Nonnenmacher, T.F.2
  • 8
    • 33748963091 scopus 로고    scopus 로고
    • Positive solutions of nonlinear fractional boundary value problems using Adomian decomposition method
    • H. Jafari and V. Daftardar-Gejji, Positive solutions of nonlinear fractional boundary value problems using Adomian decomposition method, Appl. Math. Comput. 180 (2006), no. 2, 700-706.
    • (2006) Appl. Math. Comput , vol.180 , Issue.2 , pp. 700-706
    • Jafari, H.1    Daftardar-Gejji, V.2
  • 9
    • 38149118737 scopus 로고    scopus 로고
    • Positive solutions of a boundary value problem for a nonlinear fractional differential equation
    • E. R. Kaufmann and E. Mboumi, Positive solutions of a boundary value problem for a nonlinear fractional differential equation, Electron. J. Qual. Theory Differ. Equ. 2008, No. 3, 11 pp.
    • (2008) Electron. J. Qual. Theory Differ. Equ , vol.3 , pp. 11
    • Kaufmann, E.R.1    Mboumi, E.2
  • 10
    • 78649666829 scopus 로고    scopus 로고
    • A boundary value problem of fractional order at resonance
    • N. Kosmatov, A boundary value problem of fractional order at resonance, Electron. J. Differential Equations 2010, No. 135, 10 pp.
    • (2010) Electron. J. Differential Equations , vol.135 , pp. 10
    • Kosmatov, N.1
  • 12
    • 68349091496 scopus 로고    scopus 로고
    • Positive solutions for boundary value problems of nonlinear fractional differential equation
    • S. Liang and J. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equation, Nonlinear Anal. 71 (2009), no. 11, 5545-5550.
    • (2009) Nonlinear Anal , vol.71 , Issue.11 , pp. 5545-5550
    • Liang, S.1    Zhang, J.2
  • 13
    • 84863805818 scopus 로고    scopus 로고
    • Numerical methods for sequential fractional differential equations for Caputo operator
    • G. B. Loghmani and S. Javanmardi, Numerical methods for sequential fractional differential equations for Caputo operator, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 2, 315-323.
    • (2012) Bull. Malays. Math. Sci. Soc. (2) , vol.35 , Issue.2 , pp. 315-323
    • Loghmani, G.B.1    Javanmardi, S.2
  • 15
    • 0007096742 scopus 로고
    • Fractional diffusive waves in viscoelastic solids
    • in: J. L Wegner and F. R. Norwood (Eds.), Fairfield
    • F. Mainardi, Fractional diffusive waves in viscoelastic solids, in: J. L Wegner and F. R. Norwood (Eds.), Nonlinear Waves in Solids, Fairfield, 1995, pp. 93-97.
    • (1995) Nonlinear Waves In Solids , pp. 93-97
    • Mainardi, F.1
  • 16
    • 0002113063 scopus 로고
    • Topological degree and boundary value problems for nonlinear differential equations
    • Montecatini Terme, Lecture Notes in Math., 1537 Springer, Berlin
    • J. Mawhin, Topological degree and boundary value problems for nonlinear differential equations, in Topolog-ical methods for ordinary differential equations (Montecatini Terme, 1991), 74-142, Lecture Notes in Math., 1537 Springer, Berlin.
    • (1991) Topolog-ical Methods For Ordinary Differential Equations , pp. 74-142
    • Mawhin, J.1
  • 17
    • 0033884660 scopus 로고    scopus 로고
    • Boundary value problems for fractional diffusion equations
    • R. Metzler and J. Klafter, Boundary value problems for fractional diffusion equations, Phys. A 278 (2000), no. 1-2, 107-125.
    • (2000) Phys. A , vol.278 , Issue.1-2 , pp. 107-125
    • Metzler, R.1    Klafter, J.2
  • 18
    • 0001044887 scopus 로고
    • Relaxation in filled polymers: A fractional calculus approach
    • F. Metzler, W. Schick, H. G. Kilian and T. F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys. 103 (1995), 7180-7186.
    • (1995) J. Chem. Phys , vol.103 , pp. 7180-7186
    • Metzler, F.1    Schick, W.2    Kilian, H.G.3    Nonnenmacher, T.F.4
  • 20
    • 0141508296 scopus 로고
    • Anomalous transit-time dispersion in amorphous solids
    • H. Scher and E. Montroll, Anomalous transit-time dispersion in amorphous solids, Phys. Rev. B 12 (1975) 2455-2477.
    • (1975) Phys. Rev. B , vol.12 , pp. 2455-2477
    • Scher, H.1    Montroll, E.2
  • 21
    • 33645152919 scopus 로고    scopus 로고
    • Positive solutions for boundary-value problems of nonlinear fractional differential equations
    • (electronic)
    • S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electron. J. Differential Equations 2006, No. 36, 12 pp. (electronic).
    • (2006) Electron. J. Differential Equations , Issue.36 , pp. 12
    • Zhang, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.