메뉴 건너뛰기




Volumn 31, Issue 7, 2013, Pages 1237-1244

Concise review: Erythroid versus myeloid lineage commitment: Regulating the master regulators

Author keywords

Acute leukemia; Differentiation; Erythroid differentiation; Hematopoietic progenitors; Myeloid cells; Signal transduction; Transcription factors

Indexed keywords

DNA METHYLTRANSFERASE 3A; ERYTHROPOIETIN; FLT3 LIGAND; FLUOROURACIL; LENTIVIRUS VECTOR; MEMBRANE ANTIGEN; PHENYLHYDRAZINE; RETROVIRUS VECTOR; TRANSCRIPTION FACTOR; TRANSCRIPTION FACTOR GATA 1; TRANSCRIPTION FACTOR GATA 2; TRANSCRIPTION FACTOR PU 1;

EID: 84879893899     PISSN: 10665099     EISSN: None     Source Type: Journal    
DOI: 10.1002/stem.1379     Document Type: Article
Times cited : (33)

References (112)
  • 1
    • 78751582939 scopus 로고    scopus 로고
    • Hematopoietic stem cell: Self-renewal versus differentiation
    • Seita J, Weissman IL. Hematopoietic stem cell: Self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med 2010;2:640-653.
    • (2010) Wiley Interdiscip Rev Syst Biol Med , vol.2 , pp. 640-653
    • Seita, J.1    Weissman, I.L.2
  • 2
    • 20244387299 scopus 로고    scopus 로고
    • Identification of Flt3 lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment
    • Adolfsson J, Mansson R, Buza-Vidas N et al. Identification of Flt3 lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 2005; 121:295-306.
    • (2005) Cell , vol.121 , pp. 295-306
    • Adolfsson, J.1    Mansson, R.2    Buza-Vidas, N.3
  • 3
    • 33747196725 scopus 로고    scopus 로고
    • Multilineage transcriptional priming and determination of alternate hematopoietic cell fates
    • Laslo P, Spooner CJ, Warmflash A et al. Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 2006;126:755-766.
    • (2006) Cell , vol.126 , pp. 755-766
    • Laslo, P.1    Spooner, C.J.2    Warmflash, A.3
  • 4
    • 0030954167 scopus 로고    scopus 로고
    • Multilineage gene expression precedes commitment in the hemopoietic system
    • Hu M, Krause D, Greaves M et al. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev 1997;11: 774-785.
    • (1997) Genes Dev , vol.11 , pp. 774-785
    • Hu, M.1    Krause, D.2    Greaves, M.3
  • 5
    • 84862778068 scopus 로고    scopus 로고
    • Inferring rules of lineage commitment in haematopoiesis
    • Pina C, Fugazza C, Tipping AJ et al. Inferring rules of lineage commitment in haematopoiesis. Nat Cell Biol 2012;14:287-294.
    • (2012) Nat Cell Biol , vol.14 , pp. 287-294
    • Pina, C.1    Fugazza, C.2    Tipping, A.J.3
  • 6
    • 0037071397 scopus 로고    scopus 로고
    • Transcriptional regulation of granulocyte and monocyte development
    • Friedman AD. Transcriptional regulation of granulocyte and monocyte development. Oncogene 2002;21:3377-3390.
    • (2002) Oncogene , vol.21 , pp. 3377-3390
    • Friedman, A.D.1
  • 7
    • 0026758202 scopus 로고
    • A novel temporal expression pattern of three C/EBP family members in differentiating myelomonocytic cells
    • Scott LM, Civin CI, Rorth P et al. A novel temporal expression pattern of three C/EBP family members in differentiating myelomonocytic cells. Blood 1992;80:1725-1735.
    • (1992) Blood , vol.80 , pp. 1725-1735
    • Scott, L.M.1    Civin, C.I.2    Rorth, P.3
  • 8
    • 0025246676 scopus 로고
    • The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene
    • Klemsz MJ, McKercher SR, Celada A et al. The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell 1990;61:113-124.
    • (1990) Cell , vol.61 , pp. 113-124
    • Klemsz, M.J.1    McKercher, S.R.2    Celada, A.3
  • 9
    • 0028136726 scopus 로고
    • Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages
    • Scott EW, Simon MC, Anastasi J et al. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 1994;265:1573-1577.
    • (1994) Science , vol.265 , pp. 1573-1577
    • Scott, E.W.1    Simon, M.C.2    Anastasi, J.3
  • 10
    • 0242549003 scopus 로고    scopus 로고
    • Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities
    • McKercher SR, Torbett BE, Anderson KL et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 1996;15:5647-5658.
    • (1996) EMBO J , vol.15 , pp. 5647-5658
    • McKercher, S.R.1    Torbett, B.E.2    Anderson, K.L.3
  • 11
    • 18644373047 scopus 로고    scopus 로고
    • PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis
    • Dakic A, Metcalf D, Di Rago L et al. PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J Exp Med 2005;201:1487-1502.
    • (2005) J Exp Med , vol.201 , pp. 1487-1502
    • Dakic, A.1    Metcalf, D.2    Di Rago, L.3
  • 12
    • 23944446085 scopus 로고    scopus 로고
    • Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation
    • Iwasaki H, Somoza C, Shigematsu H et al. Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood 2005;106:1590-1600.
    • (2005) Blood , vol.106 , pp. 1590-1600
    • Iwasaki, H.1    Somoza, C.2    Shigematsu, H.3
  • 13
    • 10344230611 scopus 로고    scopus 로고
    • Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha
    • Zhang P, Iwasaki-Arai J, Iwasaki H et al. Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha. Immunity 2004;21:853-863.
    • (2004) Immunity , vol.21 , pp. 853-863
    • Zhang, P.1    Iwasaki-Arai, J.2    Iwasaki, H.3
  • 14
    • 2542455620 scopus 로고    scopus 로고
    • Stepwise reprogramming of B cells into macrophages
    • Xie H, Ye M, Feng R et al. Stepwise reprogramming of B cells into macrophages. Cell 2004;117:663-676.
    • (2004) Cell , vol.117 , pp. 663-676
    • Xie, H.1    Ye, M.2    Feng, R.3
  • 15
    • 0028826488 scopus 로고
    • PU.1 (Spi-1) autoregulates its expression in myeloid cells
    • Chen H, Ray-Gallet D, Zhang P et al. PU.1 (Spi-1) autoregulates its expression in myeloid cells. Oncogene 1995;11:1549-1560.
    • (1995) Oncogene , vol.11 , pp. 1549-1560
    • Chen, H.1    Ray-Gallet, D.2    Zhang, P.3
  • 16
    • 0033564978 scopus 로고    scopus 로고
    • C/EBPalpha bypasses granulocyte colony-stimulating factor signals to rapidly induce PU.1 gene expression, stimulate granulocytic differentiation, and limit proliferation in 32D cl3 myeloblasts
    • Wang X, Scott E, Sawyers CL et al. C/EBPalpha bypasses granulocyte colony-stimulating factor signals to rapidly induce PU.1 gene expression, stimulate granulocytic differentiation, and limit proliferation in 32D cl3 myeloblasts. Blood 1999;94:560-571.
    • (1999) Blood , vol.94 , pp. 560-571
    • Wang, X.1    Scott, E.2    Sawyers, C.L.3
  • 17
    • 33751071630 scopus 로고    scopus 로고
    • The order of expression of transcription factors directs hierarchical specification of hematopoietic lineages
    • Iwasaki H, Mizuno S, Arinobu Y et al. The order of expression of transcription factors directs hierarchical specification of hematopoietic lineages. Genes Dev 2006;20:3010-3021.
    • (2006) Genes Dev , vol.20 , pp. 3010-3021
    • Iwasaki, H.1    Mizuno, S.2    Arinobu, Y.3
  • 18
    • 0142124320 scopus 로고    scopus 로고
    • Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPalpha ratio and granulocyte colony-stimulating factor
    • Dahl R, Walsh JC, Lancki D et al. Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPalpha ratio and granulocyte colony-stimulating factor. Nat Immunol 2003;4:1029-1036.
    • (2003) Nat Immunol , vol.4 , pp. 1029-1036
    • Dahl, R.1    Walsh, J.C.2    Lancki, D.3
  • 19
    • 50849139175 scopus 로고    scopus 로고
    • Gene regulatory networks directing myeloid and lymphoid cell fates within the immune system
    • Laslo P, Pongubala JM, Lancki DW et al. Gene regulatory networks directing myeloid and lymphoid cell fates within the immune system. Semin Immunol 2008;20:228-235.
    • (2008) Semin Immunol , vol.20 , pp. 228-235
    • Laslo, P.1    Pongubala, J.M.2    Lancki, D.W.3
  • 20
    • 0036668278 scopus 로고    scopus 로고
    • The GATA family (vertebrates and invertebrates)
    • Patient RK, McGhee JD. The GATA family (vertebrates and invertebrates). Curr Opin Genet Dev 2002;12:416-422.
    • (2002) Curr Opin Genet Dev , vol.12 , pp. 416-422
    • Patient, R.K.1    McGhee, J.D.2
  • 22
    • 0242411607 scopus 로고    scopus 로고
    • Identification and characterization of 2 types of erythroid progenitors that express GATA-1 at distinct levels
    • Suzuki N, Suwabe N, Ohneda O et al. Identification and characterization of 2 types of erythroid progenitors that express GATA-1 at distinct levels. Blood 2003;102:3575-3583.
    • (2003) Blood , vol.102 , pp. 3575-3583
    • Suzuki, N.1    Suwabe, N.2    Ohneda, O.3
  • 23
    • 0025977563 scopus 로고
    • Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1
    • Pevny L, Simon MC, Robertson E et al. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 1991;349:257-260.
    • (1991) Nature , vol.349 , pp. 257-260
    • Pevny, L.1    Simon, M.C.2    Robertson, E.3
  • 24
    • 0028894494 scopus 로고
    • Development of hematopoietic cells lacking transcription factor GATA-1
    • Pevny L, Lin CS, D'Agati V et al. Development of hematopoietic cells lacking transcription factor GATA-1. Development 1995;121: 163-172.
    • (1995) Development , vol.121 , pp. 163-172
    • Pevny, L.1    Lin, C.S.2    D'agati, V.3
  • 25
    • 0029926485 scopus 로고    scopus 로고
    • Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1
    • Fujiwara Y, Browne CP, Cunniff K et al. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci USA 1996;93:12355-12358.
    • (1996) Proc Natl Acad Sci USA , vol.93 , pp. 12355-12358
    • Fujiwara, Y.1    Browne, C.P.2    Cunniff, K.3
  • 26
    • 13444270650 scopus 로고    scopus 로고
    • GATA1 function, a paradigm for transcription factors in hematopoiesis
    • Ferreira R, Ohneda K, Yamamoto M et al. GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol 2005; 25:1215-1227.
    • (2005) Mol Cell Biol , vol.25 , pp. 1215-1227
    • Ferreira, R.1    Ohneda, K.2    Yamamoto, M.3
  • 27
    • 0037071383 scopus 로고    scopus 로고
    • Transcriptional regulation of erythropoiesis: An affair involving multiple partners
    • Cantor AB, Orkin SH. Transcriptional regulation of erythropoiesis: An affair involving multiple partners. Oncogene 2002;21:3368-3376.
    • (2002) Oncogene , vol.21 , pp. 3368-3376
    • Cantor, A.B.1    Orkin, S.H.2
  • 28
    • 83455220200 scopus 로고    scopus 로고
    • From stem cell to red cell: Regulation of erythropoiesis at multiple levels by multiple proteins RNAs, and chromatin modifications
    • Hattangadi SM, Wong P, Zhang L et al. From stem cell to red cell: Regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood 2011;118:6258-6268.
    • (2011) Blood , vol.118 , pp. 6258-6268
    • Hattangadi, S.M.1    Wong, P.2    Zhang, L.3
  • 29
    • 78649410968 scopus 로고    scopus 로고
    • Networking erythropoiesis
    • Kerenyi MA, Orkin SH. Networking erythropoiesis. J Exp Med 2010;207:2537-2541.
    • (2010) J Exp Med , vol.207 , pp. 2537-2541
    • Kerenyi, M.A.1    Orkin, S.H.2
  • 30
    • 70449696134 scopus 로고    scopus 로고
    • Erythroid GATA1 function revealed by genome-wide analysis of transcription factor occupancy, histone modifications, and mRNA expression
    • Cheng Y, Wu W, Kumar SA et al. Erythroid GATA1 function revealed by genome-wide analysis of transcription factor occupancy, histone modifications, and mRNA expression. Genome Res 2009;19: 2172-2184.
    • (2009) Genome Res , vol.19 , pp. 2172-2184
    • Cheng, Y.1    Wu, W.2    Kumar, S.A.3
  • 31
    • 70449675049 scopus 로고    scopus 로고
    • Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy
    • Fujiwara T, O'Geen H, Keles S et al. Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. Mol Cell 2009;36:667-681.
    • (2009) Mol Cell , vol.36 , pp. 667-681
    • Fujiwara, T.1    O'geen, H.2    Keles, S.3
  • 32
    • 76149089221 scopus 로고    scopus 로고
    • The genome-wide dynamics of the binding of Ldb1 complexes during erythroid differentiation
    • Soler E, Andrieu-Soler C, de Boer E et al. The genome-wide dynamics of the binding of Ldb1 complexes during erythroid differentiation. Genes Dev 2010;24:277-289.
    • (2010) Genes Dev , vol.24 , pp. 277-289
    • Soler, E.1    Andrieu-Soler, C.2    De Boer, E.3
  • 33
    • 70449638281 scopus 로고    scopus 로고
    • Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis
    • Yu M, Riva L, Xie H et al. Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis. Mol Cell 2009;36:682-695.
    • (2009) Mol Cell , vol.36 , pp. 682-695
    • Yu, M.1    Riva, L.2    Xie, H.3
  • 34
    • 64049118936 scopus 로고    scopus 로고
    • SCL and associated proteins distinguish active from repressive GATA transcription factor complexes
    • Tripic T, Deng W, Cheng Y et al. SCL and associated proteins distinguish active from repressive GATA transcription factor complexes. Blood 2009;113:2191-2201.
    • (2009) Blood , vol.113 , pp. 2191-2201
    • Tripic, T.1    Deng, W.2    Cheng, Y.3
  • 35
    • 77955131763 scopus 로고    scopus 로고
    • Genome-wide identification of TAL1's functional targets: Insights into its mechanisms of action in primary erythroid cells
    • Kassouf MT, Hughes JR, Taylor S et al. Genome-wide identification of TAL1's functional targets: Insights into its mechanisms of action in primary erythroid cells. Genome Res 2010;20:1064-1083.
    • (2010) Genome Res , vol.20 , pp. 1064-1083
    • Kassouf, M.T.1    Hughes, J.R.2    Taylor, S.3
  • 36
    • 33645743530 scopus 로고    scopus 로고
    • A global role for EKLF in definitive and primitive erythropoiesis
    • Hodge D, Coghill E, Keys J et al. A global role for EKLF in definitive and primitive erythropoiesis. Blood 2006;107:3359-3370.
    • (2006) Blood , vol.107 , pp. 3359-3370
    • Hodge, D.1    Coghill, E.2    Keys, J.3
  • 37
    • 77955155544 scopus 로고    scopus 로고
    • A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells
    • Tallack MR, Whitington T, Yuen WS et al. A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells. Genome Res 2010;20:1052-1063.
    • (2010) Genome Res , vol.20 , pp. 1052-1063
    • Tallack, M.R.1    Whitington, T.2    Yuen, W.S.3
  • 38
    • 22744437648 scopus 로고    scopus 로고
    • GATA-1 forms distinct activating and repressive complexes in erythroid cells
    • Rodriguez P, Bonte E, Krijgsveld J et al. GATA-1 forms distinct activating and repressive complexes in erythroid cells. EMBO J 2005;24:2354-2366.
    • (2005) EMBO J , vol.24 , pp. 2354-2366
    • Rodriguez, P.1    Bonte, E.2    Krijgsveld, J.3
  • 39
    • 34547785073 scopus 로고    scopus 로고
    • Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1
    • Saleque S, Kim J, Rooke HM et al. Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1. Mol Cell 2007;27:562-572.
    • (2007) Mol Cell , vol.27 , pp. 562-572
    • Saleque, S.1    Kim, J.2    Rooke, H.M.3
  • 40
    • 22744436722 scopus 로고    scopus 로고
    • FOG-1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1
    • Hong W, Nakazawa M, Chen YY et al. FOG-1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1. EMBO J 2005;24:2367-2378.
    • (2005) EMBO J , vol.24 , pp. 2367-2378
    • Hong, W.1    Nakazawa, M.2    Chen, Y.Y.3
  • 41
    • 77954363721 scopus 로고    scopus 로고
    • Role of the GATA-1/FOG-1/NuRD pathway in the expression of human beta-like globin genes
    • Miccio A, Blobel GA. Role of the GATA-1/FOG-1/NuRD pathway in the expression of human beta-like globin genes. Mol Cell Biol 2010;30:3460-3470.
    • (2010) Mol Cell Biol , vol.30 , pp. 3460-3470
    • Miccio, A.1    Blobel, G.A.2
  • 42
    • 74949090052 scopus 로고    scopus 로고
    • NuRD mediates activating and repressive functions of GATA-1 and FOG-1 during blood development
    • Miccio A, Wang Y, Hong W et al. NuRD mediates activating and repressive functions of GATA-1 and FOG-1 during blood development. EMBO J 2010;29:442-456.
    • (2010) EMBO J , vol.29 , pp. 442-456
    • Miccio, A.1    Wang, Y.2    Hong, W.3
  • 43
    • 77954301966 scopus 로고    scopus 로고
    • TIF1gamma controls erythroid cell fate by regulating transcription elongation
    • Bai X, Kim J, Yang Z et al. TIF1gamma controls erythroid cell fate by regulating transcription elongation. Cell 2010;142:133-143.
    • (2010) Cell , vol.142 , pp. 133-143
    • Bai, X.1    Kim, J.2    Yang, Z.3
  • 44
    • 77954659725 scopus 로고    scopus 로고
    • The role of PU.1 and GATA-1 transcription factors during normal and leukemogenic hematopoiesis
    • Burda P, Laslo P, Stopka T. The role of PU.1 and GATA-1 transcription factors during normal and leukemogenic hematopoiesis. Leukemia 2010;24:1249-1257.
    • (2010) Leukemia , vol.24 , pp. 1249-1257
    • Burda, P.1    Laslo, P.2    Stopka, T.3
  • 45
    • 84857192635 scopus 로고    scopus 로고
    • FOG-1 and GATA-1 act sequentially to specify definitive megakaryocytic and erythroid progenitors
    • Mancini E, Sanjuan-Pla A, Luciani L et al. FOG-1 and GATA-1 act sequentially to specify definitive megakaryocytic and erythroid progenitors. EMBO J 2012;31:351-365.
    • (2012) EMBO J , vol.31 , pp. 351-365
    • Mancini, E.1    Sanjuan-Pla, A.2    Luciani, L.3
  • 46
    • 0029066359 scopus 로고
    • GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts
    • Kulessa H, Frampton J, Graf T. GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. Genes Dev 1995;9:1250-1262.
    • (1995) Genes Dev , vol.9 , pp. 1250-1262
    • Kulessa, H.1    Frampton, J.2    Graf, T.3
  • 47
    • 0031962551 scopus 로고    scopus 로고
    • Forced GATA-1 expression in the murine myeloid cell line M1: Induction of c-Mpl expression and megakaryocytic/erythroid differentiation
    • Yamaguchi Y, Zon LI, Ackerman SJ et al. Forced GATA-1 expression in the murine myeloid cell line M1: Induction of c-Mpl expression and megakaryocytic/erythroid differentiation. Blood 1998;91: 450-457.
    • (1998) Blood , vol.91 , pp. 450-457
    • Yamaguchi, Y.1    Zon, L.I.2    Ackerman, S.J.3
  • 48
    • 0023839919 scopus 로고
    • Spi-1 is a putative oncogene in virally induced murine erythroleukaemias
    • Moreau-Gachelin F, Tavitian A, Tambourin P. Spi-1 is a putative oncogene in virally induced murine erythroleukaemias. Nature 1988; 331:277-280.
    • (1988) Nature , vol.331 , pp. 277-280
    • Moreau-Gachelin, F.1    Tavitian, A.2    Tambourin, P.3
  • 49
    • 0029978734 scopus 로고    scopus 로고
    • Spi-1/PU.1 transgenic mice develop multistep erythroleukemias
    • Moreau-Gachelin F, Wendling F, Molina T et al. Spi-1/PU.1 transgenic mice develop multistep erythroleukemias. Mol Cell Biol 1996; 16:2453-2463.
    • (1996) Mol Cell Biol , vol.16 , pp. 2453-2463
    • Moreau-Gachelin, F.1    Wendling, F.2    Molina, T.3
  • 50
    • 0141953999 scopus 로고    scopus 로고
    • Reversal of tumorigenicity and the block to differentiation in erythroleukemia cells by GATA-1
    • Choe KS, Radparvar F, Matushansky I et al. Reversal of tumorigenicity and the block to differentiation in erythroleukemia cells by GATA-1. Cancer Res 2003;63:6363-6369.
    • (2003) Cancer Res , vol.63 , pp. 6363-6369
    • Choe, K.S.1    Radparvar, F.2    Matushansky, I.3
  • 51
    • 0031030682 scopus 로고    scopus 로고
    • Deregulated expression of the PU.1 transcription factor blocks murine erythroleukemia cell terminal differentiation
    • Rao G, Rekhtman N, Cheng G et al. Deregulated expression of the PU.1 transcription factor blocks murine erythroleukemia cell terminal differentiation. Oncogene 1997;14:123-131.
    • (1997) Oncogene , vol.14 , pp. 123-131
    • Rao, G.1    Rekhtman, N.2    Cheng, G.3
  • 52
    • 0032146794 scopus 로고    scopus 로고
    • PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors
    • Nerlov C, Graf T. PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev 1998;12: 2403-2412.
    • (1998) Genes Dev , vol.12 , pp. 2403-2412
    • Nerlov, C.1    Graf, T.2
  • 53
    • 0037099497 scopus 로고    scopus 로고
    • Transcription factor-mediated lineage switching reveals plasticity in primary committed progenitor cells
    • Heyworth C, Pearson S, May G et al. Transcription factor-mediated lineage switching reveals plasticity in primary committed progenitor cells. EMBO J 2002;21:3770-3781.
    • (2002) EMBO J , vol.21 , pp. 3770-3781
    • Heyworth, C.1    Pearson, S.2    May, G.3
  • 54
    • 11244264337 scopus 로고    scopus 로고
    • Loss of gata1 but not gata2 converts erythropoiesis to myelopoiesis in zebrafish embryos
    • Galloway JL, Wingert RA, Thisse C et al. Loss of gata1 but not gata2 converts erythropoiesis to myelopoiesis in zebrafish embryos. Dev Cell 2005;8:109-116.
    • (2005) Dev Cell , vol.8 , pp. 109-116
    • Galloway, J.L.1    Wingert, R.A.2    Thisse, C.3
  • 55
    • 11244251722 scopus 로고    scopus 로고
    • Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish
    • Rhodes J, Hagen A, Hsu K et al. Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish. Dev Cell 2005;8:97-108.
    • (2005) Dev Cell , vol.8 , pp. 97-108
    • Rhodes, J.1    Hagen, A.2    Hsu, K.3
  • 56
    • 0142027901 scopus 로고    scopus 로고
    • PU.1 and pRB interact and cooperate to repress GATA-1 and block erythroid differentiation
    • Rekhtman N, Choe KS, Matushansky I et al. PU.1 and pRB interact and cooperate to repress GATA-1 and block erythroid differentiation. Mol Cell Biol 2003;23:7460-7474.
    • (2003) Mol Cell Biol , vol.23 , pp. 7460-7474
    • Rekhtman, N.1    Choe, K.S.2    Matushansky, I.3
  • 57
    • 27744587735 scopus 로고    scopus 로고
    • PU.1 inhibits the erythroid program by binding to GATA-1 on DNA and creating a repressive chromatin structure
    • Stopka T, Amanatullah DF, Papetti M et al. PU.1 inhibits the erythroid program by binding to GATA-1 on DNA and creating a repressive chromatin structure. EMBO J 2005;24:3712-3723.
    • (2005) EMBO J , vol.24 , pp. 3712-3723
    • Stopka, T.1    Amanatullah, D.F.2    Papetti, M.3
  • 58
    • 0033582475 scopus 로고    scopus 로고
    • C-Jun is a JNK-independent coactivator of the PU.1 transcription factor
    • Behre G, Whitmarsh AJ, Coghlan MP et al. c-Jun is a JNK-independent coactivator of the PU.1 transcription factor. J Biol Chem 1999;274:4939-4946.
    • (1999) J Biol Chem , vol.274 , pp. 4939-4946
    • Behre, G.1    Whitmarsh, A.J.2    Coghlan, M.P.3
  • 59
    • 0033587755 scopus 로고    scopus 로고
    • Negative cross-talk between hematopoietic regulators: GATA proteins repress PU 1
    • Zhang P, Behre G, Pan J et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU. 1. Proc Natl Acad Sci USA 1999;96:8705-8710.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 8705-8710
    • Zhang, P.1    Behre, G.2    Pan, J.3
  • 60
    • 33847049430 scopus 로고    scopus 로고
    • Loss of the tumor suppressor p15Ink4b enhances myeloid progenitor formation from common myeloid progenitors
    • Rosu-Myles M, Taylor BJ, Wolff L. Loss of the tumor suppressor p15Ink4b enhances myeloid progenitor formation from common myeloid progenitors. Exp Hematol 2007;35:394-406.
    • (2007) Exp Hematol , vol.35 , pp. 394-406
    • Rosu-Myles, M.1    Taylor, B.J.2    Wolff, L.3
  • 61
    • 77956497376 scopus 로고    scopus 로고
    • Myeloid-specific inactivation of p15Ink4b results in monocytosis and predisposition to myeloid leukemia
    • Bies J, Sramko M, Fares J et al. Myeloid-specific inactivation of p15Ink4b results in monocytosis and predisposition to myeloid leukemia. Blood 2010;116:979-987.
    • (2010) Blood , vol.116 , pp. 979-987
    • Bies, J.1    Sramko, M.2    Fares, J.3
  • 62
    • 84873679022 scopus 로고    scopus 로고
    • The role of tumor suppressor p15Ink4b in the regulation of hematopoietic progenitor cell fate
    • Humeniuk R, Rosu-Myles M, Fares J et al. The role of tumor suppressor p15Ink4b in the regulation of hematopoietic progenitor cell fate. Blood Cancer J 2013;2:e99.
    • (2013) Blood Cancer J , vol.2
    • Humeniuk, R.1    Rosu-Myles, M.2    Fares, J.3
  • 63
    • 84861503438 scopus 로고    scopus 로고
    • The tumor suppressor p15Ink4b regulates the differentiation and maturation of conventional dendritic cells
    • Fares J, Koller R, Humeniuk R et al. The tumor suppressor p15Ink4b regulates the differentiation and maturation of conventional dendritic cells. Blood 2012;119:5005-5015.
    • (2012) Blood , vol.119 , pp. 5005-5015
    • Fares, J.1    Koller, R.2    Humeniuk, R.3
  • 64
    • 0742288407 scopus 로고    scopus 로고
    • Coregulator-dependent facilitation of chromatin occupancy by GATA-1
    • Pal S, Cantor AB, Johnson KD et al. Coregulator-dependent facilitation of chromatin occupancy by GATA-1. Proc Natl Acad Sci USA 2004;101:980-985.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 980-985
    • Pal, S.1    Cantor, A.B.2    Johnson, K.D.3
  • 65
    • 3543038232 scopus 로고    scopus 로고
    • Globin gene activation during haemopoiesis is driven by protein complexes nucleated by GATA-1 and GATA-2
    • Anguita E, Hughes J, Heyworth C et al. Globin gene activation during haemopoiesis is driven by protein complexes nucleated by GATA-1 and GATA-2. EMBO J 2004;23:2841-2852.
    • (2004) EMBO J , vol.23 , pp. 2841-2852
    • Anguita, E.1    Hughes, J.2    Heyworth, C.3
  • 66
    • 24344480877 scopus 로고    scopus 로고
    • Developmental control via GATA factor interplay at chromatin domains
    • Bresnick EH, Martowicz ML, Pal S et al. Developmental control via GATA factor interplay at chromatin domains. J Cell Physiol 2005; 205:1-9.
    • (2005) J Cell Physiol , vol.205 , pp. 1-9
    • Bresnick, E.H.1    Martowicz, M.L.2    Pal, S.3
  • 67
    • 38349178680 scopus 로고    scopus 로고
    • Differential GATA factor stabilities: Implications for chromatin occupancy by structurally similar transcription factors
    • Lurie LJ, Boyer ME, Grass JA et al. Differential GATA factor stabilities: Implications for chromatin occupancy by structurally similar transcription factors. Biochemistry 2008;47:859-869.
    • (2008) Biochemistry , vol.47 , pp. 859-869
    • Lurie, L.J.1    Boyer, M.E.2    Grass, J.A.3
  • 68
    • 84860339002 scopus 로고    scopus 로고
    • Chromatin occupancy analysis reveals genome-wide GATA factor switching during hematopoiesis
    • Dore LC, Chlon TM, Brown CD et al. Chromatin occupancy analysis reveals genome-wide GATA factor switching during hematopoiesis. Blood 2012;119:3724-3733.
    • (2012) Blood , vol.119 , pp. 3724-3733
    • Dore, L.C.1    Chlon, T.M.2    Brown, C.D.3
  • 69
    • 0028931861 scopus 로고
    • Regulation of GATA-2 phosphorylation by mitogen-activated protein kinase and interleukin-3
    • Towatari M, May GE, Marais R et al. Regulation of GATA-2 phosphorylation by mitogen-activated protein kinase and interleukin-3.
    • (1995) J Biol Chem , vol.270 , pp. 4101-4107
    • Towatari, M.1    May, G.E.2    Marais, R.3
  • 70
    • 0041806587 scopus 로고    scopus 로고
    • GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling
    • Grass JA, Boyer ME, Pal S et al. GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proc Natl Acad Sci USA 2003; 100:8811-8816.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 8811-8816
    • Grass, J.A.1    Boyer, M.E.2    Pal, S.3
  • 71
    • 33749166029 scopus 로고    scopus 로고
    • Distinct functions of dispersed GATA factor complexes at an endogenous gene locus
    • Grass JA, Jing H, Kim SI et al. Distinct functions of dispersed GATA factor complexes at an endogenous gene locus. Mol Cell Biol 2006;26:7056-7067.
    • (2006) Mol Cell Biol , vol.26 , pp. 7056-7067
    • Grass, J.A.1    Jing, H.2    Kim, S.I.3
  • 72
    • 0028233760 scopus 로고
    • Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells
    • Weiss MJ, Keller G, Orkin SH. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev 1994;8:1184-1197.
    • (1994) Genes Dev , vol.8 , pp. 1184-1197
    • Weiss, M.J.1    Keller, G.2    Orkin, S.H.3
  • 73
    • 58149399353 scopus 로고    scopus 로고
    • GATA-2 regulates granulocyte- macrophage progenitor cell function
    • Rodrigues NP, Boyd AS, Fugazza C et al. GATA-2 regulates granulocyte- macrophage progenitor cell function. Blood 2008;112:4862-4873.
    • (2008) Blood , vol.112 , pp. 4862-4873
    • Rodrigues, N.P.1    Boyd, A.S.2    Fugazza, C.3
  • 74
    • 84860339002 scopus 로고    scopus 로고
    • Chromatin occupancy analysis reveals genome-wide GATA factor switching during hematopoiesis
    • Dore LC, Chlon TM, Brown CD et al. Chromatin occupancy analysis reveals genome-wide GATA factor switching during hematopoiesis. Blood 2012;119:3724-3733.
    • (2012) Blood , vol.119 , pp. 3724-3733
    • Dore, L.C.1    Chlon, T.M.2    Brown, C.D.3
  • 75
    • 79952762446 scopus 로고    scopus 로고
    • The gata1/pu.1 lineage fate paradigm varies between blood populations and is modulated by tif1- gamma
    • Monteiro R, Pouget C, Patient R. The gata1/pu.1 lineage fate paradigm varies between blood populations and is modulated by tif1- gamma. EMBO J 2011;30:1093-1103.
    • (2011) EMBO J , vol.30 , pp. 1093-1103
    • Monteiro, R.1    Pouget, C.2    Patient, R.3
  • 76
    • 84861212964 scopus 로고    scopus 로고
    • Regulation of murine normal and stress-induced erythropoiesis by Desert Hedgehog (Dhh)
    • Lau CI, Outram SV, Saldana JI et al. Regulation of murine normal and stress-induced erythropoiesis by Desert Hedgehog (Dhh). Blood 2012;119:4741-4751.
    • (2012) Blood , vol.119 , pp. 4741-4751
    • Lau, C.I.1    Outram, S.V.2    Saldana, J.I.3
  • 77
    • 82555172154 scopus 로고    scopus 로고
    • Integration of cytokine and transcription factor signals in hematopoietic stem cell commitment
    • Sarrazin S, Sieweke M. Integration of cytokine and transcription factor signals in hematopoietic stem cell commitment. Semin Immunol 2011;23:326-334.
    • (2011) Semin Immunol , vol.23 , pp. 326-334
    • Sarrazin, S.1    Sieweke, M.2
  • 78
    • 69249219134 scopus 로고    scopus 로고
    • Lineage commitment: Cytokines instruct
    • Stanley ER. Lineage commitment: Cytokines instruct, At last! Cell Stem Cell 2009;5:234-236.
    • (2009) At Last! Cell Stem Cell , vol.5 , pp. 234-236
    • Stanley, E.R.1
  • 79
    • 67650590934 scopus 로고    scopus 로고
    • MafB restricts MCSF- dependent myeloid commitment divisions of hematopoietic stem cells
    • Sarrazin S, Mossadegh-Keller N, Fukao T et al. MafB restricts MCSF- dependent myeloid commitment divisions of hematopoietic stem cells. Cell 2009;138:300-313.
    • (2009) Cell , vol.138 , pp. 300-313
    • Sarrazin, S.1    Mossadegh-Keller, N.2    Fukao, T.3
  • 80
    • 34547624303 scopus 로고    scopus 로고
    • Genome-wide maps of chromatin state in pluripotent and lineage-committed cells
    • Mikkelsen TS, Ku M, Jaffe DB et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 2007;448: 553-560.
    • (2007) Nature , vol.448 , pp. 553-560
    • Mikkelsen, T.S.1    Ku, M.2    Jaffe, D.B.3
  • 81
    • 77956902023 scopus 로고    scopus 로고
    • Comprehensive methylome map of lineage commitment from haematopoietic progenitors
    • Ji H, Ehrlich LI, Seita J et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 2010;467: 338-342.
    • (2010) Nature , vol.467 , pp. 338-342
    • Ji, H.1    Ehrlich, L.I.2    Seita, J.3
  • 82
    • 84866378702 scopus 로고    scopus 로고
    • The role of mutations in epigenetic regulators in myeloid malignancies
    • Shih AH, Abdel-Wahab O, Patel JP et al. The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer 2012; 12:599-612.
    • (2012) Nat Rev Cancer , vol.12 , pp. 599-612
    • Shih, A.H.1    Abdel-Wahab, O.2    Patel, J.P.3
  • 83
    • 80052285127 scopus 로고    scopus 로고
    • Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies
    • Li Z, Cai X, Cai CL et al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 2011;118:4509-4518.
    • (2011) Blood , vol.118 , pp. 4509-4518
    • Li, Z.1    Cai, X.2    Cai, C.L.3
  • 84
    • 84865152223 scopus 로고    scopus 로고
    • ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression
    • Abdel-Wahab O, Adli M, LaFave LM et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell 2012;22:180-193.
    • (2012) Cancer Cell , vol.22 , pp. 180-193
    • Abdel-Wahab, O.1    Adli, M.2    LaFave, L.M.3
  • 85
    • 84856746717 scopus 로고    scopus 로고
    • Ectopic expression of the histone methyltransferase Ezh2 in haematopoietic stem cells causes myeloproliferative disease
    • Herrera-Merchan A, Arranz L, Ligos JM et al. Ectopic expression of the histone methyltransferase Ezh2 in haematopoietic stem cells causes myeloproliferative disease. Nat Commun 2012;3:623.
    • (2012) Nat Commun , vol.3 , pp. 623
    • Herrera-Merchan, A.1    Arranz, L.2    Ligos, J.M.3
  • 86
    • 79957563769 scopus 로고    scopus 로고
    • The roles of EZH2 in cell lineage commitment
    • Chou RH, Yu YL, Hung MC. The roles of EZH2 in cell lineage commitment. Am J Transl Res 2011;3:243-250.
    • (2011) Am J Transl Res , vol.3 , pp. 243-250
    • Chou, R.H.1    Yu, Y.L.2    Hung, M.C.3
  • 87
    • 77954814317 scopus 로고    scopus 로고
    • EZH2-dependent chromatin looping controls INK4a and INK4b, but not ARF, during human progenitor cell differentiation and cellular senescence
    • Kheradmand Kia S, Solaimani Kartalaei P, Farahbakhshian E et al. EZH2-dependent chromatin looping controls INK4a and INK4b, but not ARF, during human progenitor cell differentiation and cellular senescence. Epigenetics Chromatin 2009;2:16.
    • (2009) Epigenetics Chromatin , vol.2 , pp. 16
    • Kheradmand Kia, S.1    Solaimani Kartalaei, P.2    Farahbakhshian, E.3
  • 88
    • 77957945719 scopus 로고    scopus 로고
    • Depletion of L3MBTL1 promotes the erythroid differentiation of human hematopoietic progenitor cells: Possible role in 20q- polycythemia vera
    • Perna F, Gurvich N, Hoya-Arias R et al. Depletion of L3MBTL1 promotes the erythroid differentiation of human hematopoietic progenitor cells: Possible role in 20q- polycythemia vera. Blood 2010; 116:2812-2821.
    • (2010) Blood , vol.116 , pp. 2812-2821
    • Perna, F.1    Gurvich, N.2    Hoya-Arias, R.3
  • 89
    • 21544465306 scopus 로고    scopus 로고
    • Role of transcription factors C/EBPalpha and PU.1 in normal hematopoiesis and leukemia
    • Koschmieder S, Rosenbauer F, Steidl U et al. Role of transcription factors C/EBPalpha and PU.1 in normal hematopoiesis and leukemia. Int J Hematol 2005;81:368-377.
    • (2005) Int J Hematol , vol.81 , pp. 368-377
    • Koschmieder, S.1    Rosenbauer, F.2    Steidl, U.3
  • 91
    • 0036727413 scopus 로고    scopus 로고
    • Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome
    • Wechsler J, Greene M, McDevitt MA et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet 2002;32:148-152.
    • (2002) Nat Genet , vol.32 , pp. 148-152
    • Wechsler, J.1    Greene, M.2    McDevitt, M.A.3
  • 92
    • 84867909526 scopus 로고    scopus 로고
    • Perturbation of fetal liver hematopoietic stem and progenitor cell development by trisomy 21
    • Roy A, Cowan G, Mead AJ et al. Perturbation of fetal liver hematopoietic stem and progenitor cell development by trisomy 21. Proc Natl Acad Sci USA 2012;109:17579-17584.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 17579-17584
    • Roy, A.1    Cowan, G.2    Mead, A.J.3
  • 93
    • 25444497962 scopus 로고    scopus 로고
    • GATA1-mediated megakaryocyte differentiation and growth control can be uncoupled and mapped to different domains in GATA1
    • Kuhl C, Atzberger A, Iborra F et al. GATA1-mediated megakaryocyte differentiation and growth control can be uncoupled and mapped to different domains in GATA1.
    • (2005) Mol Cell Biol , vol.25 , pp. 8592-8606
    • Kuhl, C.1    Atzberger, A.2    Iborra, F.3
  • 94
    • 23044499360 scopus 로고    scopus 로고
    • Differential requirements for the activation domain and FOG-interaction surface of GATA-1 in megakaryocyte gene expression and development
    • Muntean AG, Crispino JD. Differential requirements for the activation domain and FOG-interaction surface of GATA-1 in megakaryocyte gene expression and development. Blood 2005;106:1223-1231.
    • (2005) Blood , vol.106 , pp. 1223-1231
    • Muntean, A.G.1    Crispino, J.D.2
  • 95
    • 41149169150 scopus 로고    scopus 로고
    • Gain-of-function mutation of GATA-2 in acute myeloid transformation of chronic myeloid leukemia
    • Zhang SJ, Ma LY, Huang QH et al. Gain-of-function mutation of GATA-2 in acute myeloid transformation of chronic myeloid leukemia. Proc Natl Acad Sci USA 2008;105:2076-2081.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 2076-2081
    • Zhang, S.J.1    Ma, L.Y.2    Huang, Q.H.3
  • 96
    • 0036682473 scopus 로고    scopus 로고
    • Heterozygous PU.1 mutations are associated with acute myeloid leukemia
    • Mueller BU, Pabst T, Osato M et al. Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 2002;100:998-1007.
    • (2002) Blood , vol.100 , pp. 998-1007
    • Mueller, B.U.1    Pabst, T.2    Osato, M.3
  • 97
    • 2642519463 scopus 로고    scopus 로고
    • Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor Pu1
    • Rosenbauer F, Wagner K, Kutok JL et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, Pu1. Nat Genet 2004;36:624-630.
    • (2004) Nat Genet , vol.36 , pp. 624-630
    • Rosenbauer, F.1    Wagner, K.2    Kutok, J.L.3
  • 98
    • 34247631683 scopus 로고    scopus 로고
    • Lentiviral PU.1 overexpression restores differentiation in myeloid leukemic blasts
    • Durual S, Rideau A, Ruault-Jungblut S et al. Lentiviral PU.1 overexpression restores differentiation in myeloid leukemic blasts. Leukemia 2007;21:1050-1059.
    • (2007) Leukemia , vol.21 , pp. 1050-1059
    • Durual, S.1    Rideau, A.2    Ruault-Jungblut, S.3
  • 99
    • 34848850741 scopus 로고    scopus 로고
    • A distal single nucleotide polymorphism alters long-range regulation of the PU.1 gene in acute myeloid leukemia
    • Steidl U, Steidl C, Ebralidze A et al. A distal single nucleotide polymorphism alters long-range regulation of the PU.1 gene in acute myeloid leukemia. J Clin Invest 2007;117:2611-2620.
    • (2007) J Clin Invest , vol.117 , pp. 2611-2620
    • Steidl, U.1    Steidl, C.2    Ebralidze, A.3
  • 100
    • 0037082508 scopus 로고    scopus 로고
    • Mutations in the gene encoding the transcription factor CCAAT/enhancer binding protein alpha in myelodysplastic syndromes and acute myeloid leukemias
    • Gombart AF, Hofmann WK, Kawano S et al. Mutations in the gene encoding the transcription factor CCAAT/enhancer binding protein alpha in myelodysplastic syndromes and acute myeloid leukemias. Blood 2002;99:1332-1340.
    • (2002) Blood , vol.99 , pp. 1332-1340
    • Gombart, A.F.1    Hofmann, W.K.2    Kawano, S.3
  • 101
    • 0035093813 scopus 로고    scopus 로고
    • Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/ EBPalpha), in acute myeloid leukemia
    • Pabst T, Mueller BU, Zhang P et al. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/ EBPalpha), in acute myeloid leukemia. Nat Genet 2001;27:263-270.
    • (2001) Nat Genet , vol.27 , pp. 263-270
    • Pabst, T.1    Mueller, B.U.2    Zhang, P.3
  • 102
    • 83255187561 scopus 로고    scopus 로고
    • C/EBPalpha dysregulation in AML and ALL
    • Paz-Priel I, Friedman A. C/EBPalpha dysregulation in AML and ALL. Crit Rev Oncog 2011;16:93-102.
    • (2011) Crit Rev Oncog , vol.16 , pp. 93-102
    • Paz-Priel, I.1    Friedman, A.2
  • 103
    • 84856596417 scopus 로고    scopus 로고
    • Inactivation of polycomb repressive complex 2 components in myeloproliferative and myelodysplastic/ myeloproliferative neoplasms
    • Score J, Hidalgo-Curtis C, Jones AV et al. Inactivation of polycomb repressive complex 2 components in myeloproliferative and myelodysplastic/ myeloproliferative neoplasms. Blood 2012;119:1208-1213.
    • (2012) Blood , vol.119 , pp. 1208-1213
    • Score, J.1    Hidalgo-Curtis, C.2    Jones, A.V.3
  • 104
    • 77955087290 scopus 로고    scopus 로고
    • Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes
    • Nikoloski G, Langemeijer SM, Kuiper RP et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 2010;42:665-667.
    • (2010) Nat Genet , vol.42 , pp. 665-667
    • Nikoloski, G.1    Langemeijer, S.M.2    Kuiper, R.P.3
  • 105
    • 77957987676 scopus 로고    scopus 로고
    • Novel homo- and hemizygous mutations in EZH2 in myeloid malignancies
    • Makishima H, Jankowska AM, Tiu RV et al. Novel homo- and hemizygous mutations in EZH2 in myeloid malignancies. Leukemia 2010; 24:1799-1804.
    • (2010) Leukemia , vol.24 , pp. 1799-1804
    • Makishima, H.1    Jankowska, A.M.2    Tiu, R.V.3
  • 106
    • 77955085750 scopus 로고    scopus 로고
    • Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders
    • Ernst T, Chase AJ, Score J et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 2010;42:722-726.
    • (2010) Nat Genet , vol.42 , pp. 722-726
    • Ernst, T.1    Chase, A.J.2    Score, J.3
  • 107
    • 84856605920 scopus 로고    scopus 로고
    • Polycomb segment myeloid malignancies
    • Saunthararajah Y, Maciejewski J. Polycomb segment myeloid malignancies. Blood 2012;119:1097-1098.
    • (2012) Blood , vol.119 , pp. 1097-1098
    • Saunthararajah, Y.1    Maciejewski, J.2
  • 108
    • 0031860559 scopus 로고    scopus 로고
    • Review of alterations of the cyclin-dependent kinase inhibitor INK4 family genes p15 p16, p18 and p19 in human leukemia- lymphoma cells
    • Drexler HG. Review of alterations of the cyclin-dependent kinase inhibitor INK4 family genes p15, p16, p18 and p19 in human leukemia- lymphoma cells. Leukemia 1998;12:845-859.
    • (1998) Leukemia , vol.12 , pp. 845-859
    • Drexler, H.G.1
  • 109
    • 18044374452 scopus 로고    scopus 로고
    • Methylation of p15(INK4b) and E-cadherin genes is independently correlated with poor prognosis in acute myeloid leukemia
    • Shimamoto T, Ohyashiki JH, Ohyashiki K. Methylation of p15(INK4b) and E-cadherin genes is independently correlated with poor prognosis in acute myeloid leukemia. Leuk Res 2005;29:653-659.
    • (2005) Leuk Res , vol.29 , pp. 653-659
    • Shimamoto, T.1    Ohyashiki, J.H.2    Ohyashiki, K.3
  • 110
    • 0141502199 scopus 로고    scopus 로고
    • Methylation of p15INK4B is common, is associated with deletion of genes on chromosome arm 7q and predicts a poor prognosis in therapy-related myelodysplasia and acute myeloid leukemia
    • Christiansen DH, Andersen MK, Pedersen-Bjergaard J. Methylation of p15INK4B is common, is associated with deletion of genes on chromosome arm 7q and predicts a poor prognosis in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 2003;17: 1813-1819.
    • (2003) Leukemia , vol.17 , pp. 1813-1819
    • Christiansen, D.H.1    Andersen, M.K.2    Pedersen-Bjergaard, J.3
  • 111
    • 0035134705 scopus 로고    scopus 로고
    • Methylation of the p15(INK4B) gene in myelodysplastic syndrome: It can be detected early at diagnosis or during disease progression and is highly associated with leukaemic transformation
    • Tien HF, Tang JH, Tsay W et al. Methylation of the p15(INK4B) gene in myelodysplastic syndrome: It can be detected early at diagnosis or during disease progression and is highly associated with leukaemic transformation. Br J Haematol 2001;112:148-154.
    • (2001) Br J Haematol , vol.112 , pp. 148-154
    • Tien, H.F.1    Tang, J.H.2    Tsay, W.3
  • 112
    • 60849089645 scopus 로고    scopus 로고
    • Aberrant DNA methylation is a dominant mechanism in MDS progression to AML
    • Jiang Y, Dunbar A, Gondek LP et al. Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood 2009; 113:1315-1325.
    • (2009) Blood , vol.113 , pp. 1315-1325
    • Jiang, Y.1    Dunbar, A.2    Gondek, L.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.