메뉴 건너뛰기




Volumn 49, Issue 7, 2013, Pages 4005-4021

Improving particle filters in rainfall-runoff models: Application of the resample-move step and the ensemble Gaussian particle filter

Author keywords

data assimilation; ensemble Kalman filter; Gaussian particle filter; particle filter; rainfall runoff models

Indexed keywords

GAUSSIAN DISTRIBUTION; MARKOV CHAINS; MONTE CARLO METHODS; RAIN; RUNOFF;

EID: 84879867134     PISSN: 00431397     EISSN: 19447973     Source Type: Journal    
DOI: 10.1002/wrcr.20291     Document Type: Article
Times cited : (29)

References (52)
  • 1
    • 79952447568 scopus 로고    scopus 로고
    • Bridging the ensemble Kalman filter and particle filters: The adaptive Gaussian mixture filter
    • doi: 10.1007/s10596-010-9207-1.
    • Andreas, S., H. A. Karlsen, G. Naevdal, H. J. Skaug, and, B. Valles, (2011), Bridging the ensemble Kalman filter and particle filters: The adaptive Gaussian mixture filter, Comput. Geosci., 15 (2), 293-305, doi: 10.1007/s10596-010-9207-1.
    • (2011) Comput. Geosci. , vol.15 , Issue.2 , pp. 293-305
    • Andreas, S.1    Karlsen, H.A.2    Naevdal, G.3    Skaug, H.J.4    Valles, B.5
  • 2
    • 77953523599 scopus 로고    scopus 로고
    • Particle Markov chain Monte Carlo methods
    • doi: 10.1111/j.1467-9868.2009.00736.x.
    • Andrieu, C., A. Doucet, and, R. Holenstein, (2010), Particle Markov chain Monte Carlo methods, J. R. Stat. Soc. B, 72 (3), 269-342, doi: 10.1111/j.1467-9868.2009.00736.x.
    • (2010) J. R. Stat. Soc. B , vol.72 , Issue.3 , pp. 269-342
    • Andrieu, C.1    Doucet, A.2    Holenstein, R.3
  • 3
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    • DOI 10.1109/78.978374, PII S1053587X0200569X
    • Arulampalam, M. S., S. Maskell, and, N. Gordon, (2002), A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. Signal Process., 50, 174-188, doi: 10.1109/78.978374. (Pubitemid 34291500)
    • (2002) IEEE Transactions on Signal Processing , vol.50 , Issue.2 , pp. 174-188
    • Arulampalam, M.S.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 4
    • 0032439201 scopus 로고    scopus 로고
    • Analysis scheme in the ensemble Kalman filter
    • Burgers, G., P. J. van Leeuwen, and, G. Evensen, (1998), On the analysis scheme in the ensemble Kalman filter, Mon. Weather Rev., 126, 1719-1724, doi: 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2. (Pubitemid 128597660)
    • (1998) Monthly Weather Review , vol.126 , Issue.6 , pp. 1719-1724
    • Burgers, G.1    Van Leeuwen, P.J.2    Evensen, G.3
  • 6
    • 33745931058 scopus 로고    scopus 로고
    • Assessment of model uncertainty for soil moisture through ensemble verification
    • doi: 10.1029/2005JD006367.
    • De Lannoy, G. J. M., P. R. Houser, V. R. N. Pauwels, and, N. E. C. Verhoest, (2006), Assessment of model uncertainty for soil moisture through ensemble verification, J. Geophys. Res., 111, D10101, doi: 10.1029/2005JD006367.
    • (2006) J. Geophys. Res. , vol.111
    • De Lannoy, G.J.M.1    Houser, P.R.2    Pauwels, V.R.N.3    Verhoest, N.E.C.4
  • 7
    • 84858807931 scopus 로고    scopus 로고
    • Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting
    • W04518, 10.1029/2011WR011011.
    • DeChant, C. M., and, H. Moradkhani, (2012), Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting, Water Resour. Res., 48, W04518, doi: 10.1029/2011WR011011.
    • (2012) Water Resour. Res. , vol.48
    • Dechant, C.M.1    Moradkhani, H.2
  • 9
    • 77951131231 scopus 로고    scopus 로고
    • A tutorial on particle filtering and smoothing: Fifteen years later
    • Oxford Univ. Press, Oxford, U. K.
    • Doucet, A., and, A. M. Johansen, (2009), A tutorial on particle filtering and smoothing: Fifteen years later, in Handbook of Nonlinear Filtering, Oxford Univ. Press, Oxford, U. K.
    • (2009) Handbook of Nonlinear Filtering
    • Doucet, A.1    Johansen, A.M.2
  • 10
    • 0001460136 scopus 로고    scopus 로고
    • On sequential Monte Carlo sampling methods for Bayesian filtering
    • doi: 10.1023/A:1008935410038.
    • Doucet, A., S. Godsill, and, C. Andrieu, (2000), On sequential Monte Carlo sampling methods for Bayesian filtering, Stat. Comput., 10 (3), 197-208, doi: 10.1023/A:1008935410038.
    • (2000) Stat. Comput. , vol.10 , Issue.3 , pp. 197-208
    • Doucet, A.1    Godsill, S.2    Andrieu, C.3
  • 11
    • 0035266886 scopus 로고    scopus 로고
    • Particle filters for state estimation of jump Markov linear systems
    • DOI 10.1109/78.905890, PII S1053587X01014192
    • Doucet, A., N. Gordon, and, V. Krishnamurthy, (2001), Particle filters for state estimation of jump Markov linear systems, IEEE Trans. Signal Process., 49 (3), 613-624, doi: 10.1109/78.905890. (Pubitemid 32583163)
    • (2001) IEEE Transactions on Signal Processing , vol.49 , Issue.3 , pp. 613-624
    • Doucet, A.1    Gordon, N.J.2    Krishnamurthy, V.3
  • 12
    • 0027558431 scopus 로고
    • Shuffled complex evolution approach for effective and efficient global minimization
    • Duan, Q. Y., V. K. Gupta, and, S. Sorooshian, (1993), Shuffled complex evolution approach for effective and efficient global minimization, J. Optim. Theory Appl., 76 (3), 501-521, doi: 10.1007/BF00939380. (Pubitemid 23643003)
    • (1993) Journal of Optimization Theory and Applications , vol.76 , Issue.3 , pp. 501-521
    • Duan, Q.Y.1    Gupta, V.K.2    Sorooshian, S.3
  • 13
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics
    • doi: 10.1029/94JC00572.
    • Evensen, G., (1994), Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res, 99 (C5), 10,143-10,162, doi: 10.1029/94JC00572.
    • (1994) J. Geophys. Res , vol.99 , Issue.C5 , pp. 10
    • Evensen, G.1
  • 14
    • 0036929961 scopus 로고    scopus 로고
    • Markov chain Monte Carlo, sufficient statistics, and particle filters
    • DOI 10.1198/106186002321018821
    • Fearnhead, P., (2002), Markov chain Monte Carlo, sufficient statistics, and particle filters, J. Comput. Graph. Stat., 11 (4), 848-862, doi: 10.1198/106186002835. (Pubitemid 36047109)
    • (2002) Journal of Computational and Graphical Statistics , vol.11 , Issue.4 , pp. 848-862
    • Fearnhead, P.1
  • 17
    • 0027580559 scopus 로고
    • Novel approach to nonlinear/non-Gaussian Bayesian state estimation
    • Gordon, N., D. Salmond, and, A. Smith, (1993), Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEE Proc. Radar Signal Proc, 140 (2), 107-113.
    • (1993) IEE Proc. Radar Signal Proc , vol.140 , Issue.2 , pp. 107-113
    • Gordon, N.1    Salmond, D.2    Smith, A.3
  • 18
    • 0031294907 scopus 로고    scopus 로고
    • Monte Carlo filter using the genetic algorithm operators
    • 1 - 23, 10.1080/00949659708811843.
    • Higuchi, T., (1997), Monte Carlo filter using the genetic algorithm operators, J. Stat. Comput. Simul., 59 (1), 1 - 23, doi: 10.1080/ 00949659708811843.
    • (1997) J. Stat. Comput. Simul. , vol.59 , Issue.1
    • Higuchi, T.1
  • 19
    • 0033820573 scopus 로고    scopus 로고
    • Assimilation of active microwave observation data for soil moisture profile estimation
    • doi: 10.1029/2000WR900100.
    • Hoeben, R., and, P. A. Troch, (2000), Assimilation of active microwave observation data for soil moisture profile estimation, Water Resour. Res., 36 (10), 2805-2819, doi: 10.1029/2000WR900100.
    • (2000) Water Resour. Res. , vol.36 , Issue.10 , pp. 2805-2819
    • Hoeben, R.1    Troch, P.A.2
  • 20
    • 39749100695 scopus 로고    scopus 로고
    • A new approximate solution of the optimal nonlinear filter for data assimilation in meteorology and oceanography
    • DOI 10.1175/2007MWR1927.1
    • Hoteit, I., D. T. Pham, G. Triantafyllou, and, G. Korres, (2008), A new approximate solution of the optimal nonlinear filter for data assimilation in meteorology and oceanography, Mon. Weather Rev., 136 (1), 317-334, doi: 10.1175/2007MWR1927.1. (Pubitemid 351308471)
    • (2008) Monthly Weather Review , vol.136 , Issue.1 , pp. 317-334
    • Hoteit, I.1    Pham, D.-T.2    Triantafyllou, G.3    Korres, G.4
  • 21
    • 84857084331 scopus 로고    scopus 로고
    • Particle Kalman filtering: A nonlinear Bayesian framework for ensemble Kalman filters
    • doi: 10.1175/2011MWR3640.1.
    • Hoteit, I., X. Luo, and, D.-T. Pham, (2012), Particle Kalman filtering: A nonlinear Bayesian framework for ensemble Kalman filters, Mon. Weather Rev., 140 (2), 528-542, doi: 10.1175/2011MWR3640.1.
    • (2012) Mon. Weather Rev. , vol.140 , Issue.2 , pp. 528-542
    • Hoteit, I.1    Luo, X.2    Pham, D.-T.3
  • 22
    • 0035129828 scopus 로고    scopus 로고
    • A sequential ensemble Kalman filter for atmospheric data assimilation
    • Houtekamer, P., and, H. Mitchell, (2001), A sequential ensemble Kalman filter for atmospheric data assimilation, Mon. Weather Rev., 129 (1), 123-137, doi: 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2. (Pubitemid 32180439)
    • (2001) Monthly Weather Review , vol.129 , Issue.1 , pp. 123-137
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 23
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman, R. E., (1960), A new approach to linear filtering and prediction problems, J. Basic Eng. Trans. ASME, 82 (Series D), 35-45.
    • (1960) J. Basic Eng. Trans. ASME , vol.82 , Issue.SERIES D , pp. 35-45
    • Kalman, R.E.1
  • 24
    • 33644550945 scopus 로고    scopus 로고
    • Calibration of conceptual hydrological models revisited: 1. Overcoming numerical artefacts
    • doi: 10.1016/j.jhydrol.2005.07.012.
    • Kavetski, D., G. Kuczera, and, S. W. Franks, (2006), Calibration of conceptual hydrological models revisited: 1. Overcoming numerical artefacts, J. Hydrol., 320, 173-186, doi: 10.1016/j.jhydrol.2005.07.012.
    • (2006) J. Hydrol. , vol.320 , pp. 173-186
    • Kavetski, D.1    Kuczera, G.2    Franks, S.W.3
  • 25
    • 0030304310 scopus 로고    scopus 로고
    • Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
    • Kitagawa, G., (1996), Monte Carlo filter and smoother for non-Gaussian nonlinear state space models, J. Comput. Graph. Stat., 5 (1), 1-25.
    • (1996) J. Comput. Graph. Stat. , vol.5 , Issue.1 , pp. 1-25
    • Kitagawa, G.1
  • 26
    • 0141954079 scopus 로고    scopus 로고
    • Gaussian particle filtering
    • doi: 10.1109/TSP.2003.816758.
    • Kotecha, J., and, P. Djuric, (2003a), Gaussian particle filtering, IEEE Trans. Signal Process., 51 (10), 2592-2601, doi: 10.1109/TSP.2003.816758.
    • (2003) IEEE Trans. Signal Process. , vol.51 , Issue.10 , pp. 2592-2601
    • Kotecha, J.1    Djuric, P.2
  • 27
    • 0141919628 scopus 로고    scopus 로고
    • Gaussian sum particle filtering
    • doi: 10.1109/TSP.2003.816754.
    • Kotecha, J., and, P. Djuric, (2003b), Gaussian sum particle filtering, IEEE Trans. Signal Proces., 51 (10), 2602-2612, doi: 10.1109/TSP.2003.816754.
    • (2003) IEEE Trans. Signal Proces. , vol.51 , Issue.10 , pp. 2602-2612
    • Kotecha, J.1    Djuric, P.2
  • 28
    • 78751618597 scopus 로고    scopus 로고
    • Snow water equivalent prediction using Bayesian data assimilation methods
    • doi: 10.1007/s00477-010-0445-5.
    • Leisenring, M., and, H. Moradkhani, (2011), Snow water equivalent prediction using Bayesian data assimilation methods, Stochastic Environ. Res. Risk Assess., 25 (2), 253-270, doi: 10.1007/s00477-010-0445-5.
    • (2011) Stochastic Environ. Res. Risk Assess. , vol.25 , Issue.2 , pp. 253-270
    • Leisenring, M.1    Moradkhani, H.2
  • 29
    • 84867103057 scopus 로고    scopus 로고
    • Analyzing the uncertainty of suspended sediment load prediction using sequential data assimilation
    • doi: 10.1016/j.jhydrol.2012.08.049.
    • Leisenring, M., and, H. Moradkhani, (2012), Analyzing the uncertainty of suspended sediment load prediction using sequential data assimilation, J. Hydrol., 468-469, 268-282, doi: 10.1016/j.jhydrol.2012.08.049.
    • (2012) J. Hydrol. , vol.468-469 , pp. 268-282
    • Leisenring, M.1    Moradkhani, H.2
  • 30
    • 0031581519 scopus 로고    scopus 로고
    • Development and test of the distributed HBV-96 hydrological model
    • DOI 10.1016/S0022-1694(97)00041-3, PII S0022169497000413
    • Lindström, G., B. Johansson, M. Persson, M. Gardelin, and, S. Bergström, (1997), Development and test of the distributed HBV-96 hydrological model, J. Hydrol., 201 (1-4), 272-288, doi: 10.1016/S0022-1694(97) 00041-3. (Pubitemid 28037764)
    • (1997) Journal of Hydrology , vol.201 , Issue.1-4 , pp. 272-288
    • Lindstrom, G.1    Johansson, B.2    Persson, M.3    Gardelin, M.4    Bergstrom, S.5
  • 31
    • 0032359151 scopus 로고    scopus 로고
    • Sequential Monte Carlo methods for dynamic systems
    • doi: 10.2307/2669847.
    • Liu, J. S., and, R. Chen, (1998), Sequential Monte Carlo methods for dynamic systems, J. Am. Stat. Assoc., 93, 1032-1044, doi: 10.2307/2669847.
    • (1998) J. Am. Stat. Assoc. , vol.93 , pp. 1032-1044
    • Liu, J.S.1    Chen, R.2
  • 32
    • 84871397512 scopus 로고    scopus 로고
    • Advancing data assimilation in operational hydrologic forecasting: Progresses, challenges, and emerging opportunities
    • et al., doi: 10.5194/hess-16-3863-2012.
    • Liu, Y., et al. (2012), Advancing data assimilation in operational hydrologic forecasting: Progresses, challenges, and emerging opportunities, Hydrol. Earth Syst. Sci., 16 (10), 3863-3887, doi: 10.5194/hess-16-3863-2012.
    • (2012) Hydrol. Earth Syst. Sci. , vol.16 , Issue.10 , pp. 3863-3887
    • Liu, Y.1
  • 33
    • 33745778704 scopus 로고    scopus 로고
    • Assimilation of remotely sensed soil saturation levels in conceptual rainfall-runoff models
    • IAHS Publ. 226-234, IAHS Press, Oxfordshire, U. K.
    • Matgen, P., J. Henry, L. Hoffmann, and, L. Pfister, (2006), Assimilation of remotely sensed soil saturation levels in conceptual rainfall-runoff models, in IAHS Book, Prediction in Ungauged Basins: Promise and Progress, IAHS Publ. 303, pp. 226-234, IAHS Press, Oxfordshire, U. K.
    • (2006) IAHS Book, Prediction in Ungauged Basins: Promise and Progress , vol.303
    • Matgen, P.1    Henry, J.2    Hoffmann, L.3    Pfister, L.4
  • 35
    • 79951977683 scopus 로고    scopus 로고
    • Hydraulic parameter estimation by remotely-sensed top soil moisture observations with the particle filter
    • doi: 10.1016/j.jhydrol.2011.01.020.
    • Montzka, C., H. Moradkhani, L. Weihermller, H.-J. H. Franssen, M. Canty, and, H. Vereecken, (2011), Hydraulic parameter estimation by remotely-sensed top soil moisture observations with the particle filter, J. Hydrol., 399, 410-421, doi: 10.1016/j.jhydrol.2011.01.020.
    • (2011) J. Hydrol. , vol.399 , pp. 410-421
    • Montzka, C.1    Moradkhani, H.2    Weihermller, L.3    Franssen, H.-J.H.4    Canty, M.5    Vereecken, H.6
  • 36
    • 33846362488 scopus 로고    scopus 로고
    • The PDM rainfall-runoff model
    • Moore, R. J., (2007), The PDM rainfall-runoff model, Hydrol. Earth Syst. Sci., 11 (1), 483-499, doi: 10.5194/hess-11-483-2007. (Pubitemid 46134785)
    • (2007) Hydrology and Earth System Sciences , vol.11 , Issue.1 , pp. 483-499
    • Moore, R.J.1
  • 37
    • 78751628207 scopus 로고    scopus 로고
    • General review of rainfall-runoff modeling: Model calibration, data assimilation, and uncertainty analysis
    • edited by S. Sorooshian et al., Springer, Berlin, doi: 10.1007/978-3-540-77843-1-1.
    • Moradkhani, H., and, S. Sorooshian, (2008), General review of rainfall-runoff modeling: Model calibration, data assimilation, and uncertainty analysis, in Hydrological Modelling and the Water Cycle, Water Science and Technology Library, vol. 63, edited by, S. Sorooshian, et al., pp. 1-24, Springer, Berlin, doi: 10.1007/978-3-540-77843-1-1.
    • (2008) Hydrological Modelling and the Water Cycle, Water Science and Technology Library , vol.63 , pp. 1-24
    • Moradkhani, H.1    Sorooshian, S.2
  • 38
    • 20844449766 scopus 로고    scopus 로고
    • Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter
    • doi: 10.1029/2004WR003604.
    • Moradkhani, H., K.-L. Hsu, H. Gupta, and, S. Sorooshian, (2005), Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter, Water Resour. Res., 41, W05012, doi: 10.1029/2004WR003604.
    • (2005) Water Resour. Res. , vol.41
    • Moradkhani, H.1    Hsu, K.-L.2    Gupta, H.3    Sorooshian, S.4
  • 39
    • 84871364784 scopus 로고    scopus 로고
    • Evolution of ensemble data assimilation for uncertainty quantification using the particle filter-Markov chain Monte Carlo method
    • 10.1029/2012WR012144.
    • Moradkhani, H., C. M. DeChant, and, S. Sorooshian, (2012), Evolution of ensemble data assimilation for uncertainty quantification using the particle filter-Markov chain Monte Carlo method, Water Resour. Res., 48, doi: 10.1029/2012WR012144.
    • (2012) Water Resour. Res. , vol.48
    • Moradkhani, H.1    Dechant, C.M.2    Sorooshian, S.3
  • 40
    • 0003345004 scopus 로고    scopus 로고
    • Improving regularised particle filters
    • edited by A. Doucet, N. D. Freitas, and N. Gordon, Springer, New York.
    • Musso, C., N. Oudjane, and, F. Le Gland, (2001), Improving regularised particle filters, in Sequential Monte Carlo Methods in Practice, edited by, A. Doucet, N. D. Freitas, and, N. Gordon, pp. 247-271, Springer, New York.
    • (2001) Sequential Monte Carlo Methods in Practice , pp. 247-271
    • Musso, C.1    Oudjane, N.2    Le Gland, F.3
  • 41
    • 79952184589 scopus 로고    scopus 로고
    • Particle filter-based assimilation algorithms for improved estimation of root-zone soil moisture under dynamic vegetation conditions
    • doi: 10.1016/j.advwatres.2010.09.019.
    • Nagarajan, K., J. Judge, W. D. Graham, and, A. Monsivais-Huertero, (2010), Particle filter-based assimilation algorithms for improved estimation of root-zone soil moisture under dynamic vegetation conditions, Adv. Water Resour., 34 (4), 433-477, doi: 10.1016/j.advwatres.2010.09.019.
    • (2010) Adv. Water Resour. , vol.34 , Issue.4 , pp. 433-477
    • Nagarajan, K.1    Judge, J.2    Graham, W.D.3    Monsivais-Huertero, A.4
  • 42
    • 77957125283 scopus 로고    scopus 로고
    • Data assimilation with the weighted ensemble Kalman filter
    • doi: 10.1111/j.1600-0870.2010.00461.x.
    • Papadakis, N., E. Memin, A. Cuzol, and, N. Gengembre, (2010), Data assimilation with the weighted ensemble Kalman filter, Tellus A, 62 (5), 673-697, doi: 10.1111/j.1600-0870.2010.00461.x.
    • (2010) Tellus A , vol.62 , Issue.5 , pp. 673-697
    • Papadakis, N.1    Memin, E.2    Cuzol, A.3    Gengembre, N.4
  • 43
    • 84858823339 scopus 로고    scopus 로고
    • Toward reduction of model uncertainty: Integration of Bayesian model averaging and data assimilation
    • doi: 10.1029/2011WR011116.
    • Parrish, M. A., H. Moradkhani, and, C. M. DeChant, (2012), Toward reduction of model uncertainty: Integration of Bayesian model averaging and data assimilation, Water Resour. Res., 48, W03519, doi: 10.1029/2011WR011116.
    • (2012) Water Resour. Res. , vol.48
    • Parrish, M.A.1    Moradkhani, H.2    Dechant, C.M.3
  • 44
    • 1542427941 scopus 로고    scopus 로고
    • Filtering via simulation: Auxiliary particle filters
    • doi: 10.2307/2670179.
    • Pitt, M., and, N. Shephard, (1999), Filtering via simulation: Auxiliary particle filters, J. Am. Stat. Assoc., 94 (446), 590-599, doi: 10.2307/2670179.
    • (1999) J. Am. Stat. Assoc. , vol.94 , Issue.446 , pp. 590-599
    • Pitt, M.1    Shephard, N.2
  • 45
    • 84856961948 scopus 로고    scopus 로고
    • The importance of parameter resampling for soil moisture data assimilation into hydrologic models using the particle filter
    • doi: 10.5194/hess-16-375-2012.
    • Plaza, D. A., R. De Keyser, G. J. M. De Lannoy, L. Giustarini, P. Matgen, and, V. R. N. Pauwels, (2012), The importance of parameter resampling for soil moisture data assimilation into hydrologic models using the particle filter, Hydrol. Earth Syst. Sci., 16 (2), 375-390, doi: 10.5194/hess-16-375-2012.
    • (2012) Hydrol. Earth Syst. Sci. , vol.16 , Issue.2 , pp. 375-390
    • Plaza, D.A.1    De Keyser, R.2    De Lannoy, G.J.M.3    Giustarini, L.4    Matgen, P.5    Pauwels, V.R.N.6
  • 46
    • 0036322061 scopus 로고    scopus 로고
    • Hydrologic data assimilation with the ensemble Kalman filter
    • Reichle, R., D. McLaughlin, and, D. Entekhabi, (2002), Hydrologic data assimilation with the ensemble Kalman filter, Mon. Weather Rev., 130 (1), 103-114, doi: 10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2. (Pubitemid 34838242)
    • (2002) Monthly Weather Review , vol.130 , Issue.1 , pp. 103-114
    • Reichle, R.H.1    McLaughlin, D.B.2    Entekhabi, D.3
  • 47
    • 84861123587 scopus 로고    scopus 로고
    • Bayesian model averaging using particle filtering and Gaussian mixture modeling: Theory, concepts, and simulation experiments
    • doi: 10.1029/2011WR011607.
    • Rings, J., J. A. Vrugt, G. Schoups, J. A. Huisman, and, H. Vereecken, (2012), Bayesian model averaging using particle filtering and Gaussian mixture modeling: Theory, concepts, and simulation experiments, Water Resour. Res., 48, W05520, doi: 10.1029/2011WR011607.
    • (2012) Water Resour. Res. , vol.48
    • Rings, J.1    Vrugt, J.A.2    Schoups, G.3    Huisman, J.A.4    Vereecken, H.5
  • 49
    • 33746200035 scopus 로고    scopus 로고
    • Real-time data assimilation for operational ensemble streamflow forecasting
    • DOI 10.1175/JHM504.1
    • Vrugt, J., H. Gupta, and, B. Nuallain, (2006), Real-time data assimilation for operational ensemble streamflow forecasting, J. Hydrometeorol., 7 (3), 548-565, doi: 10.1175/JHM504.1. (Pubitemid 44087847)
    • (2006) Journal of Hydrometeorology , vol.7 , Issue.3 , pp. 548-565
    • Vrugt, J.A.1    Gupta, H.V.2    Nuallain, B.O.3    Bouten, W.4
  • 50
    • 84872965655 scopus 로고    scopus 로고
    • Hydrologic data assimilation using particle Markov chain Monte Carlo simulation: Theory, concepts and applications
    • 51, 457 - 478, doi: 10.1016/j.advwatres.2012.04.002.
    • Vrugt, J. A., C. J. ter Braak, C. G. Diks, and, G. Schoups, (2012), Hydrologic data assimilation using particle Markov chain Monte Carlo simulation: Theory, concepts and applications, Adv. Water Resour., 51, 457 - 478, doi: 10.1016/j.advwatres.2012.04.002.
    • (2012) Adv. Water Resour.
    • Vrugt, J.A.1    Ter Braak, C.J.2    Diks, C.G.3    Schoups, G.4
  • 52
    • 33750368306 scopus 로고    scopus 로고
    • Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models
    • doi: 10.1029/2005WR004093.
    • Weerts, A. H., and, G. Y. H. El Serafy, (2006), Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models, Water Resour. Res., 42, W09403, doi: 10.1029/2005WR004093.
    • (2006) Water Resour. Res. , vol.42
    • Weerts, A.H.1    El Serafy, G.Y.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.