-
2
-
-
2942677086
-
Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids
-
10.1063/1.1736319 1:CAS:528:DC%2BD2cXksVClsrs%3D
-
Bhattacharya P, Saha SK, Yadav A, Phelan PE, Prasher RS (2004) Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids. J Appl Phys 95(11):6492-6494
-
(2004)
J Appl Phys
, vol.95
, Issue.11
, pp. 6492-6494
-
-
Bhattacharya, P.1
Saha, S.K.2
Yadav, A.3
Phelan, P.E.4
Prasher, R.S.5
-
3
-
-
63349091864
-
A feasibility assessment of the use of nanofluids to enhance the in-vessel retention capability in light-water reactors
-
10.1016/j.nucengdes.2008.06.017 1:CAS:528:DC%2BD1MXktFSis7c%3D
-
Buongiorno J, Hu LW, Apostolakis G, Hannink R, Lucas T, Chupin A (2009a) A feasibility assessment of the use of nanofluids to enhance the in-vessel retention capability in light-water reactors. Nucl Eng Des 239(5):941-948
-
(2009)
Nucl Eng des
, vol.239
, Issue.5
, pp. 941-948
-
-
Buongiorno, J.1
Hu, L.W.2
Apostolakis, G.3
Hannink, R.4
Lucas, T.5
Chupin, A.6
-
4
-
-
70349607220
-
A benchmark study on the thermal conductivity of nanofluids
-
10.1063/1.3245330
-
Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, Tolmachev YV, Keblinski P, Hu L-W, Alvarado JL, Bang IC, Bishnoi SW, Bonetti M, Botz F, Cecere A, Chang Y, Chen G, Chen H, Chung SJ, Chyu MK, Das KS, Di Paola R, Ding Y, Dubois F, Dzido G, Eapen J, Escher W, Funfschilling D, Galand Q, Gao J, Gharagozloo PE, Goodson KE, Gutierrez JG, Hong H, Horton M, Hwang KS, Iorio CS, Jang SP, Jarzebski AB, Jiang Y, Jin L, Kabelac S, Kamath A, Kedzierski MA, Kieng LG, Kim C, Kim J-H, Kim S, Lee SH, Leong KC, Manna I, Michel B, Ni R, Patel HE, Philip J, Poulikakos D, Reynaud C, Savino R, Singh PK, Song P, Sundararajan T, Timofeeva E, Tritcak T, Turanov AN, Van Vaerenbergh S, Wen D, Witharana S, Yang C, Yeh W-H, Zhao X-Z, Zhou S-Q (2009b) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106(9):094312-094314
-
(2009)
J Appl Phys
, vol.106
, Issue.9
, pp. 094312-094314
-
-
Buongiorno, J.1
Venerus, D.C.2
Prabhat, N.3
McKrell, T.4
Townsend, J.5
Christianson, R.6
Tolmachev, Y.V.7
Keblinski, P.8
Hu, L.-W.9
Alvarado, J.L.10
Bang, I.C.11
Bishnoi, S.W.12
Bonetti, M.13
Botz, F.14
Cecere, A.15
Chang, Y.16
Chen, G.17
Chen, H.18
Chung, S.J.19
Chyu, M.K.20
Das, K.S.21
Di Paola, R.22
Ding, Y.23
Dubois, F.24
Dzido, G.25
Eapen, J.26
Escher, W.27
Funfschilling, D.28
Galand, Q.29
Gao, J.30
Gharagozloo, P.E.31
Goodson, K.E.32
Gutierrez, J.G.33
Hong, H.34
Horton, M.35
Hwang, K.S.36
Iorio, C.S.37
Jang, S.P.38
Jarzebski, A.B.39
Jiang, Y.40
Jin, L.41
Kabelac, S.42
Kamath, A.43
Kedzierski, M.A.44
Kieng, L.G.45
Kim, C.46
Kim, J.-H.47
Kim, S.48
Lee, S.H.49
Leong, K.C.50
Manna, I.51
Michel, B.52
Ni, R.53
Patel, H.E.54
Philip, J.55
Poulikakos, D.56
Reynaud, C.57
Savino, R.58
Singh, P.K.59
Song, P.60
Sundararajan, T.61
Timofeeva, E.62
Tritcak, T.63
Turanov, A.N.64
Van Vaerenbergh, S.65
Wen, D.66
Witharana, S.67
Yang, C.68
Yeh, W.-H.69
Zhao, X.-Z.70
Zhou, S.-Q.71
more..
-
5
-
-
0037079782
-
On techniques for the measurement of the mass fractal dimension of aggregates
-
10.1016/S0001-8686(00)00078-6 1:CAS:528:DC%2BD3MXptFemtrk%3D
-
Bushell GC, Yan YD, Woodfield D, Raper J, Amal R (2002) On techniques for the measurement of the mass fractal dimension of aggregates. Adv Colloid Interface Sci 95(1):1-50
-
(2002)
Adv Colloid Interface Sci
, vol.95
, Issue.1
, pp. 1-50
-
-
Bushell, G.C.1
Yan, Y.D.2
Woodfield, D.3
Raper, J.4
Amal, R.5
-
6
-
-
33644862109
-
Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes
-
10.1021/es0518068 10.1021/es0518068 1:CAS:528:DC%2BD28XpsVGhtA%3D%3D
-
Chen KL, Mylon SE, Elimelech M (2006) Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environ Sci Technol 40(5):1516-1523. doi: 10.1021/es0518068
-
(2006)
Environ Sci Technol
, vol.40
, Issue.5
, pp. 1516-1523
-
-
Chen, K.L.1
Mylon, S.E.2
Elimelech, M.3
-
7
-
-
56449088830
-
Particle aspect-ratio effects on the thermal conductivity of micro- and nanoparticle suspensions
-
10.1115/1.2928050
-
Cherkasova AS, Shan JW (2008) Particle aspect-ratio effects on the thermal conductivity of micro- and nanoparticle suspensions. J Heat Transf 130(8):082406-082407
-
(2008)
J Heat Transf
, vol.130
, Issue.8
, pp. 082406-082407
-
-
Cherkasova, A.S.1
Shan, J.W.2
-
8
-
-
47349121045
-
Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants
-
10.1016/j.cap.2007.04.060
-
Choi C, Yoo HS, Oh JM (2008) Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants. Curr Appl Phys 8(6):710-712
-
(2008)
Curr Appl Phys
, vol.8
, Issue.6
, pp. 710-712
-
-
Choi, C.1
Yoo, H.S.2
Oh, J.M.3
-
9
-
-
33749265491
-
Heat transfer in nanofluids a review
-
10.1080/01457630600904593 1:CAS:528:DC%2BD28XhtFWqsbvO
-
Das S, Choi S, Patel H (2006) Heat transfer in nanofluids a review. Heat Transf Eng 27(10):3-19
-
(2006)
Heat Transf Eng
, vol.27
, Issue.10
, pp. 3-19
-
-
Das, S.1
Choi, S.2
Patel, H.3
-
11
-
-
77956152116
-
The Classical nature of thermal conduction in nanofluids
-
10.1115/1.4001304 10.1115/1.4001304
-
Eapen J, Rusconi R, Piazza R, Yip S (2010) The Classical nature of thermal conduction in nanofluids. J Heat Transf 132(10):102402. doi: 10.1115/1.4001304
-
(2010)
J Heat Transf
, vol.132
, Issue.10
, pp. 102402
-
-
Eapen, J.1
Rusconi, R.2
Piazza, R.3
Yip, S.4
-
12
-
-
0001435905
-
Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles
-
10.1063/1.1341218 1:CAS:528:DC%2BD3MXotlOgtA%3D%3D
-
Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718-720
-
(2001)
Appl Phys Lett
, vol.78
, Issue.6
, pp. 718-720
-
-
Eastman, J.A.1
Choi, S.U.S.2
Li, S.3
Yu, W.4
Thompson, L.J.5
-
13
-
-
84977586068
-
Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen
-
10.1002/andp.19053220806 10.1002/andp.19053220806
-
Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 322(8):549-560. doi: 10.1002/andp.19053220806
-
(1905)
Ann Phys
, vol.322
, Issue.8
, pp. 549-560
-
-
Einstein, A.1
-
14
-
-
33644690829
-
Role of Brownian motion hydrodynamics on nanofluid thermal conductivity
-
10.1063/1.1756684 10.1063/1.2179118
-
Evans W, Fish J, Keblinski P (2006) Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett 88(9):4316. doi: 10.1063/1.1756684
-
(2006)
Appl Phys Lett
, vol.88
, Issue.9
, pp. 4316
-
-
Evans, W.1
Fish, J.2
Keblinski, P.3
-
15
-
-
39149138986
-
Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids
-
10.1016/j.ijheatmasstransfer.2007.10.017 1:CAS:528:DC%2BD1cXis1ahu7s%3D
-
Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P (2008) Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int J Heat Mass Transf 51(5-6):1431-1438
-
(2008)
Int J Heat Mass Transf
, vol.51
, Issue.5-6
, pp. 1431-1438
-
-
Evans, W.1
Prasher, R.2
Fish, J.3
Meakin, P.4
Phelan, P.5
Keblinski, P.6
-
16
-
-
78651390164
-
Review of heat conduction in nanofluids
-
10.1115/1.4002633
-
Fan J, Wang L (2011) Review of heat conduction in nanofluids. J Heat Transfer 133(4):040801-040814
-
(2011)
J Heat Transfer
, vol.133
, Issue.4
, pp. 040801-040814
-
-
Fan, J.1
Wang, L.2
-
17
-
-
84859652218
-
2 nanofluids: A case against purported nanoparticle convection effects
-
10.1016/j.ijheatmasstransfer.2012.03.009 1:CAS:528:DC%2BC38Xnt1Cnsrg%3D
-
2 nanofluids: a case against purported nanoparticle convection effects. Int J Heat Mass Transf 55(13-14):3447-3453
-
(2012)
Int J Heat Mass Transf
, vol.55
, Issue.13-14
, pp. 3447-3453
-
-
Feng, X.1
Johnson, D.W.2
-
18
-
-
36149004611
-
A mathematical treatment of the electric conductivity and capacity of disperse systems I. Phe electric conductivity of a suspension of homogeneous spheroids. physical
-
10.1103/PhysRev.24.575 1:CAS:528:DyaB2MXkt1Wk
-
Fricke H (1924) A mathematical treatment of the electric conductivity and capacity of disperse systems I. the electric conductivity of a suspension of homogeneous spheroids. physical. Review 24(5):575-587
-
(1924)
Review
, vol.24
, Issue.5
, pp. 575-587
-
-
Fricke, H.1
-
19
-
-
71949122689
-
Experimental investigation of heat conduction mechanisms in nanofluids
-
10.1021/nl902358m 10.1021/nl902358m 1:CAS:528:DC%2BD1MXhsVSgtbrI
-
Gao JW, Zheng RT, Ohtani H, Zhu DS, Chen G (2009) Experimental investigation of heat conduction mechanisms in nanofluids. Clue Clust Nano Lett 9(12):4128-4132. doi: 10.1021/nl902358m
-
(2009)
Clue Clust Nano Lett
, vol.9
, Issue.12
, pp. 4128-4132
-
-
Gao, J.W.1
Zheng, R.T.2
Ohtani, H.3
Zhu, D.S.4
Chen, G.5
-
20
-
-
42149109642
-
Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid
-
10.1063/1.2902483
-
Garg J, Poudel B, Chiesa M, Gordon JB, Ma JJ, Wang JB, Ren ZF, Kang YT, Ohtani H, Nanda J, McKinley GH, Chen G (2008) Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J Appl Phys 103(7):074301-074306
-
(2008)
J Appl Phys
, vol.103
, Issue.7
, pp. 074301-074306
-
-
Garg, J.1
Poudel, B.2
Chiesa, M.3
Gordon, J.B.4
Ma, J.J.5
Wang, J.B.6
Ren, Z.F.7
Kang, Y.T.8
Ohtani, H.9
Nanda, J.10
McKinley, G.H.11
Chen, G.12
-
21
-
-
72149089590
-
Enhancement of heat transfer using nanofluids - An overview
-
10.1016/j.rser.2009.10.004 1:CAS:528:DC%2BD1MXhsF2isbjI
-
Godson L, Raja B, Mohan Lal D, Wongwises S (2010) Enhancement of heat transfer using nanofluids - an overview. Renew Sustain Energy Rev 14(2):629-641
-
(2010)
Renew Sustain Energy Rev
, vol.14
, Issue.2
, pp. 629-641
-
-
Godson, L.1
Raja, B.2
Mohan Lal, D.3
Wongwises, S.4
-
22
-
-
36849124660
-
A variational approach to the theory of the effective magnetic permeability of multiphase materials
-
10.1063/1.1728579 10.1063/1.1728579
-
Hashin Z, Shtrikman S (1962) A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33(10):7. doi: 10.1063/1.1728579
-
(1962)
J Appl Phys
, vol.33
, Issue.10
, pp. 7
-
-
Hashin, Z.1
Shtrikman, S.2
-
23
-
-
44449136482
-
Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles
-
10.1007/s10646-008-0225-x 10.1007/s10646-008-0225-x
-
Hassellöv M, Readman J, Ranville J, Tiede K (2008) Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 17(5):344-361. doi: 10.1007/s10646-008- 0225-x
-
(2008)
Ecotoxicology
, vol.17
, Issue.5
, pp. 344-361
-
-
Hassellöv, M.1
Readman, J.2
Ranville, J.3
Tiede, K.4
-
24
-
-
49349133102
-
The theory of the transient hot-wire method for measuring thermal conductivity
-
10.1016/0378-4363(76)90203-5
-
Healy JJ, de Groot JJ, Kestin J (1976) The theory of the transient hot-wire method for measuring thermal conductivity. Physica B+C 82(2):392-408
-
(1976)
Physica B+C
, vol.82
, Issue.2
, pp. 392-408
-
-
Healy, J.J.1
De Groot, J.J.2
Kestin, J.3
-
25
-
-
84863322825
-
Effects of aggregation on the thermal conductivity of alumina/water nanofluids
-
10.1016/j.tca.2011.12.019 1:CAS:528:DC%2BC38XpsFWru7k%3D
-
Hong J, Kim D (2012) Effects of aggregation on the thermal conductivity of alumina/water nanofluids. Thermochim Acta 542:28-32
-
(2012)
Thermochim Acta
, vol.542
, pp. 28-32
-
-
Hong, J.1
Kim, D.2
-
26
-
-
2942694254
-
Role of Brownian motion in the enhanced thermal conductivity of nanofluids
-
10.1063/1.1756684 10.1063/1.1756684 1:CAS:528:DC%2BD2cXktVeiu78%3D
-
Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84:4316. doi: 10.1063/1.1756684
-
(2004)
Appl Phys Lett
, vol.84
, pp. 4316
-
-
Jang, S.P.1
Choi, S.U.S.2
-
27
-
-
42549168945
-
Measuring sub nanometre sizes using dynamic light scattering
-
10.1007/s11051-007-9317-4 10.1007/s11051-007-9317-4 1:CAS:528: DC%2BD1cXkvFajtro%3D
-
Kaszuba M, McKnight D, Connah M, McNeil-Watson F, Nobbmann U (2008) Measuring sub nanometre sizes using dynamic light scattering. J Nanopart Res 10(5):823-829. doi: 10.1007/s11051-007-9317-4
-
(2008)
J Nanopart Res
, vol.10
, Issue.5
, pp. 823-829
-
-
Kaszuba, M.1
McKnight, D.2
Connah, M.3
McNeil-Watson, F.4
Nobbmann, U.5
-
28
-
-
0035910140
-
Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)
-
10.1016/S0017-9310(01)00175-2 1:CAS:528:DC%2BD3MXotVymsrc%3D
-
Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45(4):855-863
-
(2002)
Int J Heat Mass Transf
, vol.45
, Issue.4
, pp. 855-863
-
-
Keblinski, P.1
Phillpot, S.R.2
Choi, S.U.S.3
Eastman, J.A.4
-
29
-
-
68849105094
-
Application of nanofluids in heating buildings and reducing pollution
-
10.1016/j.apenergy.2009.03.021 1:CAS:528:DC%2BD1MXhtVeqtrfK
-
Kulkarni DP, Das DK, Vajjha RS (2009) Application of nanofluids in heating buildings and reducing pollution. Appl Energy 86(12):2566-2573
-
(2009)
Appl Energy
, vol.86
, Issue.12
, pp. 2566-2573
-
-
Kulkarni, D.P.1
Das, D.K.2
Vajjha, R.S.3
-
30
-
-
10144232149
-
Prediction of three-dimensional fractal dimensions using the two-dimensional properties of fractal aggregates
-
10.1016/j.cis.2004.07.001 1:CAS:528:DC%2BD2cXhtVChsrbN
-
Lee C, Kramer TA (2004) Prediction of three-dimensional fractal dimensions using the two-dimensional properties of fractal aggregates. Adv Colloid Interface Sci 112(1-3):49-57
-
(2004)
Adv Colloid Interface Sci
, vol.112
, Issue.1-3
, pp. 49-57
-
-
Lee, C.1
Kramer, T.A.2
-
31
-
-
0032825295
-
Measuring thermal conductivity of fluids containing oxide nanoparticles
-
10.1115/1.2825978 1:CAS:528:DyaK1MXktVyns70%3D
-
Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transfer 121(2):280-289
-
(1999)
J Heat Transfer
, vol.121
, Issue.2
, pp. 280-289
-
-
Lee, S.1
Choi, S.U.S.2
Li, S.3
Eastman, J.A.4
-
32
-
-
77956619288
-
Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator)
-
10.1016/j.applthermaleng.2010.07.019 1:CAS:528:DC%2BC3cXhtFOnur7E
-
Leong KY, Saidur R, Kazi SN, Mamun AH (2010) Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator). Appl Therm Eng 30(17-18):2685-2692
-
(2010)
Appl Therm Eng
, vol.30
, Issue.17-18
, pp. 2685-2692
-
-
Leong, K.Y.1
Saidur, R.2
Kazi, S.N.3
Mamun, A.H.4
-
33
-
-
27544441565
-
Experimental investigations on transport properties of magnetic fluids
-
10.1016/j.expthermflusci.2005.03.021 1:CAS:528:DC%2BD2MXhtFGrs7jN
-
Li Q, Xuan Y, Wang J (2005) Experimental investigations on transport properties of magnetic fluids. Exp Thermal Fluid Sci 30(2):109-116
-
(2005)
Exp Thermal Fluid Sci
, vol.30
, Issue.2
, pp. 109-116
-
-
Li, Q.1
Xuan, Y.2
Wang, J.3
-
34
-
-
70349202023
-
A review on development of nanofluid preparation and characterization
-
10.1016/j.powtec.2009.07.025 1:CAS:528:DC%2BD1MXhtFGjtrvE
-
Li Y, Zhou Je, Tung S, Schneider E, Xi S (2009) A review on development of nanofluid preparation and characterization. Powder Technol 196(2):89-101
-
(2009)
Powder Technol
, vol.196
, Issue.2
, pp. 89-101
-
-
Li, Y.1
Zhou, J.2
Tung, S.3
Schneider, E.4
Xi, S.5
-
35
-
-
84857060770
-
2 solutions: Measurements and modeling
-
10.1007/s11051-011-0548-z 10.1007/s11051-011-0548-z 1:CAS:528: DC%2BC3MXhs1Sqt7jP
-
2 solutions: measurements and modeling. J Nanopart Res 13(12):6483-6491. doi: 10.1007/s11051-011-0548-z
-
(2011)
J Nanopart Res
, vol.13
, Issue.12
, pp. 6483-6491
-
-
Li, K.1
Zhang, W.2
Huang, Y.3
Chen, Y.4
-
36
-
-
19944374667
-
Universal diffusion-limited colloid aggregation
-
10.1088/0953-8984/2/23/521
-
Lin MY, Lindsay HM, Weitz DA, Klein RCBR, Meakin P (1990a) Universal diffusion-limited colloid aggregation. J Phys Condens Matter 2(23):5283
-
(1990)
J Phys Condens Matter
, vol.2
, Issue.23
, pp. 5283
-
-
Lin, M.Y.1
Lindsay, H.M.2
Weitz, D.A.3
Klein, R.4
Meakin, P.5
-
37
-
-
9644267285
-
Universal reaction-limited colloid aggregation
-
10.1103/PhysRevA.41.2005 1:CAS:528:DyaK3cXhsVKhtbc%3D
-
Lin MY, Lindsay HM, Weitz DA, Ball RC, Klein R, Meakin P (1990b) Universal reaction-limited colloid aggregation. Phys Rev A 41(4):2005
-
(1990)
Phys Rev A
, vol.41
, Issue.4
, pp. 2005
-
-
Lin, M.Y.1
Lindsay, H.M.2
Weitz, D.A.3
Ball, R.C.4
Klein, R.5
Meakin, P.6
-
38
-
-
26044467637
-
Enhancement of thermal conductivity with carbon nanotube for nanofluids
-
10.1016/j.icheatmasstransfer.2005.05.005 1:CAS:528:DC%2BD2MXhtVCnt77O
-
Liu M-S, Ching-Cheng Lin M, Huang IT, Wang C-C (2005) Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int Commun Heat Mass Transf 32(9):1202-1210
-
(2005)
Int Commun Heat Mass Transf
, vol.32
, Issue.9
, pp. 1202-1210
-
-
Liu, M.-S.1
Ching-Cheng Lin, M.2
Huang, I.T.3
Wang, C.-C.4
-
39
-
-
33747046393
-
Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method
-
10.1016/j.ijheatmasstransfer.2006.02.012 1:CAS:528:DC%2BD28XlvF2rtr4%3D
-
Liu M-S, Lin MC-C, Tsai CY, Wang C-C (2006) Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. Int J Heat Mass Transf 49(17-18):3028-3033
-
(2006)
Int J Heat Mass Transf
, vol.49
, Issue.17-18
, pp. 3028-3033
-
-
Liu, M.-S.1
Lin, M.-C.2
Tsai, C.Y.3
Wang, C.-C.4
-
41
-
-
23844431934
-
Fractal intermediates in the self-assembly of silicatein filaments
-
10.1073/pnas.0503968102 10.1073/pnas.0503968102 1:CAS:528: DC%2BD2MXpsFGgtrs%3D
-
Murr MM, Morse DE (2005) Fractal intermediates in the self-assembly of silicatein filaments. Proc Natl Acad Sci USA 102(33):11657-11662. doi: 10.1073/pnas.0503968102
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, Issue.33
, pp. 11657-11662
-
-
Murr, M.M.1
Morse, D.E.2
-
43
-
-
33846598376
-
3-water nanofluid for an electronic liquid cooling system
-
10.1016/j.applthermaleng.2006.09.028 1:CAS:528:DC%2BD2sXhtlOmurg%3D
-
3-water nanofluid for an electronic liquid cooling system. Appl Therm Eng 27(8-9):1501-1506
-
(2007)
Appl Therm Eng
, vol.27
, Issue.8-9
, pp. 1501-1506
-
-
Nguyen, C.T.1
Roy, G.2
Gauthier, C.3
Galanis, N.4
-
44
-
-
84857051607
-
Computational analysis of factors influencing thermal conductivity of nanofluids
-
10.1007/s11051-011-0389-9 10.1007/s11051-011-0389-9 1:CAS:528: DC%2BC3MXhs1Sqt7vL
-
Okeke G, Witharana S, Antony S, Ding Y (2011) Computational analysis of factors influencing thermal conductivity of nanofluids. J Nanopart Res 13(12):6365-6375. doi: 10.1007/s11051-011-0389-9
-
(2011)
J Nanopart Res
, vol.13
, Issue.12
, pp. 6365-6375
-
-
Okeke, G.1
Witharana, S.2
Antony, S.3
Ding, Y.4
-
45
-
-
77649233259
-
Enhanced thermal conductivity of nanofluids: A state-of-the-art review
-
10.1007/s10404-009-0524-4
-
Özerinç S, Kakaç S, YazIcIoǧlu A (2009) Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluid 8(2):145-170
-
(2009)
Microfluid Nanofluid
, vol.8
, Issue.2
, pp. 145-170
-
-
Özerinç, S.1
Kakaç, S.2
Yazicioǧlu, A.3
-
46
-
-
0000856458
-
Mouvement brownien d'un ellipsoide-I. Dispersion diélectrique pour des molécules ellipsoidales
-
10.1051/jphysrad:01934005010049700 1:CAS:528:DyaA2MXhtVWltw%3D%3D
-
Perrin F (1934) Mouvement brownien d'un ellipsoide-I. Dispersion diélectrique pour des molécules ellipsoidales. J Phys Paris 5:497-511
-
(1934)
J Phys Paris
, vol.5
, pp. 497-511
-
-
Perrin, F.1
-
47
-
-
0002821446
-
Mouvement Brownien d'un ellipsoide (II). Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoidales
-
Perrin F (1936) Mouvement Brownien d'un ellipsoide (II). Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoidales. J Phys Radium 7 (1)
-
(1936)
J Phys Radium
, vol.7
, Issue.1
-
-
Perrin, F.1
-
48
-
-
36249016229
-
Enhancement of thermal conductivity in magnetite based nanofluid due to chain like structures
-
10.1063/1.2812699
-
Philip J, Shima PD, Raj B (2007) Enhancement of thermal conductivity in magnetite based nanofluid due to chain like structures. Appl Phys Lett 91(20):203103-203108
-
(2007)
Appl Phys Lett
, vol.91
, Issue.20
, pp. 203103-203108
-
-
Philip, J.1
Shima, P.D.2
Raj, B.3
-
49
-
-
18144386609
-
Thermal conductivity of nanoscale colloidal solutions (nanofluids)
-
10.1103/PhysRevLett.94.025901
-
Prasher R, Bhattacharya P, Phelan PE (2005) Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 94(2):025901
-
(2005)
Phys Rev Lett
, vol.94
, Issue.2
, pp. 025901
-
-
Prasher, R.1
Bhattacharya, P.2
Phelan, P.E.3
-
50
-
-
33746933431
-
Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid)
-
10.1021/nl060992s 10.1021/nl060992s 1:CAS:528:DC%2BD28Xls1WlsrY%3D
-
Prasher R, Phelan PE, Bhattacharya P (2006) Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett 6(7):1529-1534. doi: 10.1021/nl060992s
-
(2006)
Nano Lett
, vol.6
, Issue.7
, pp. 1529-1534
-
-
Prasher, R.1
Phelan, P.E.2
Bhattacharya, P.3
-
51
-
-
0028319359
-
Thermal conductivity of aqueous sodium chloride solutions
-
10.1021/je00013a053 10.1021/je00013a053 1:CAS:528:DyaK2cXmtlGquw%3D%3D
-
Ramires MLV, Nieto de Castro CA, Fareleira JMNA, Wakeham WA (1994) Thermal conductivity of aqueous sodium chloride solutions. J Chem Eng Data 39(1):186-190. doi: 10.1021/je00013a053
-
(1994)
J Chem Eng Data
, vol.39
, Issue.1
, pp. 186-190
-
-
Ramires, M.L.V.1
Nieto De Castro, C.A.2
Fareleira, J.3
Wakeham, W.A.4
-
52
-
-
84856053082
-
Anomalous heat transfer modes of nanofluids: A review based on statistical analysis
-
10.1186/1556-276X-6-391 1:CAS:528:DC%2BC38XhsFSktrzM
-
Sergis A, Hardalupas Y (2011) Anomalous heat transfer modes of nanofluids: a review based on statistical analysis. Nanoscale Res Lett 6(1):391
-
(2011)
Nanoscale Res Lett
, vol.6
, Issue.1
, pp. 391
-
-
Sergis, A.1
Hardalupas, Y.2
-
53
-
-
77952961192
-
Thermal conductivity of concentrated colloids in different states
-
10.1021/jp910722j 10.1021/jp910722j 1:CAS:528:DC%2BC3cXlvVakt78%3D
-
Shalkevich N, Shalkevich A, Bûrgi T (2010) Thermal conductivity of concentrated colloids in different states. J Phys Chem C 114(21):9568-9572. doi: 10.1021/jp910722j
-
(2010)
J Phys Chem C
, vol.114
, Issue.21
, pp. 9568-9572
-
-
Shalkevich, N.1
Shalkevich, A.2
Bûrgi, T.3
-
54
-
-
43449113895
-
Application of nanofluids in minimum quantity lubrication grinding
-
Shen B, Shih A, Tung S (2007) Application of nanofluids in minimum quantity lubrication grinding. ASME Conf Proc 48108:725-731
-
(2007)
ASME Conf Proc 48108
, pp. 725-731
-
-
Shen, B.1
Shih, A.2
Tung, S.3
-
55
-
-
66749146019
-
Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids
-
10.1063/1.3147855 10.1063/1.3147855
-
Shima PD, Philip J, Raj B (2009) Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids. Appl Phys Lett 94(22):223101-223103. doi: 10.1063/1.3147855
-
(2009)
Appl Phys Lett
, vol.94
, Issue.22
, pp. 223101-223103
-
-
Shima, P.D.1
Philip, J.2
Raj, B.3
-
56
-
-
0001230788
-
Versuch einer mathematischen Theorie der Koagulationskinetik kolloider lösungen
-
Smoluchowski M (1917) Versuch einer mathematischen Theorie der Koagulationskinetik kolloider lösungen. Z Phys Chem 92(215):557-585
-
(1917)
Z Phys Chem
, vol.92
, Issue.215
, pp. 557-585
-
-
Smoluchowski, M.1
-
57
-
-
80052520538
-
Nanofluid for enhanced oil recovery
-
10.1016/j.petrol.2011.06.014 1:CAS:528:DC%2BC3MXht1ylu7fL
-
Suleimanov BA, Ismailov FS, Veliyev EF (2011) Nanofluid for enhanced oil recovery. J Petrol Sci Eng 78(2):431-437
-
(2011)
J Petrol Sci Eng
, vol.78
, Issue.2
, pp. 431-437
-
-
Suleimanov, B.A.1
Ismailov, F.S.2
Veliyev, E.F.3
-
58
-
-
70149086665
-
A computational study on the effective properties of heterogeneous random media containing particulate inclusions
-
10.1088/0022-3727/42/17/175409
-
Tawerghi E, Yi Y-B (2009) A computational study on the effective properties of heterogeneous random media containing particulate inclusions. J Phys D 42(17):181-230
-
(2009)
J Phys D
, vol.42
, Issue.17
, pp. 181-230
-
-
Tawerghi, E.1
Yi, Y.-B.2
-
59
-
-
67650242882
-
Physical and chemical data section 2
-
D.W. Green (eds) McGraw-Hill New york
-
Thomson GH, Friend DG, Rowley RL, Wilding WV, Poling BE (2008) Physical and chemical data section 2. In: Green DW (ed) Perry's chemical engineer's handbook. McGraw-Hill, New york, pp 2-48
-
(2008)
Perry's Chemical Engineer's Handbook
, pp. 2-48
-
-
Thomson, G.H.1
Friend, D.G.2
Rowley, R.L.3
Wilding, W.V.4
Poling, B.E.5
-
60
-
-
33748262070
-
Critical review of heat transfer characteristics of nanofluids
-
10.1016/j.rser.2005.01.010 1:CAS:528:DC%2BD28XptVCnt7k%3D
-
Trisaksri V, Wongwises S (2007) Critical review of heat transfer characteristics of nanofluids. Renew Sustain Energy Rev 11(3):512-523
-
(2007)
Renew Sustain Energy Rev
, vol.11
, Issue.3
, pp. 512-523
-
-
Trisaksri, V.1
Wongwises, S.2
-
61
-
-
70349600885
-
Heat- and mass-transport in aqueous silica nanofluids
-
10.1007/s00231-009-0533-6 10.1007/s00231-009-0533-6 1:CAS:528: DC%2BD1MXht1eiurbP
-
Turanov A, Tolmachev Y (2009) Heat- and mass-transport in aqueous silica nanofluids. Heat Mass Transf 45(12):1583-1588. doi: 10.1007/s00231-009-0533-6
-
(2009)
Heat Mass Transf
, vol.45
, Issue.12
, pp. 1583-1588
-
-
Turanov, A.1
Tolmachev, Y.2
-
62
-
-
26044482045
-
Heat transfer enhancement of nanofluids in rotary blade coupling of four-wheel-drive vehicles
-
10.1007/s00707-005-0248-9 10.1007/s00707-005-0248-9
-
Tzeng S, Lin C, Huang K (2005) Heat transfer enhancement of nanofluids in rotary blade coupling of four-wheel-drive vehicles. Acta Mech 179(1):11-23. doi: 10.1007/s00707-005-0248-9
-
(2005)
Acta Mech
, vol.179
, Issue.1
, pp. 11-23
-
-
Tzeng, S.1
Lin, C.2
Huang, K.3
-
63
-
-
84879832549
-
-
U.S. National Institutes of Health B, Maryland, USA
-
U.S. National Institutes of Health B, Maryland, USA. http://rsb.info.nih. gov/ij/
-
-
-
-
64
-
-
0019044055
-
Thermal conductivity of water and oleum
-
10.1021/je60086a024 10.1021/je60086a024 1:CAS:528:DyaL3cXksFGhs7Y%3D
-
Venart JES, Prasad RC (1980) Thermal conductivity of water and oleum. J Chem Eng Data 25(3):196-198. doi: 10.1021/je60086a024
-
(1980)
J Chem Eng Data
, vol.25
, Issue.3
, pp. 196-198
-
-
Venart, J.E.S.1
Prasad, R.C.2
-
66
-
-
0000431380
-
The use of photon correlation spectroscopy for estimating the rate constant for doublet formation in an aggregating colloidal dispersion
-
10.1016/0021-9797(92)90439-S 10.1016/0021-9797(92)90439-S 1:CAS:528:DyaK38XhtlKqtL4%3D
-
Virden JW, Berg JC (1992) The use of photon correlation spectroscopy for estimating the rate constant for doublet formation in an aggregating colloidal dispersion. J Colloid Interface Sci 149(2):528-535. doi: 10.1016/0021-9797(92) 90439-S
-
(1992)
J Colloid Interface Sci
, vol.149
, Issue.2
, pp. 528-535
-
-
Virden, J.W.1
Berg, J.C.2
-
67
-
-
33745747708
-
Modeling transient absorption and thermal conductivity in a simple nanofluid
-
10.1021/nl060670o 10.1021/nl060670o 1:CAS:528:DC%2BD28XjvVGqt7g%3D
-
Vladkov M, Barrat J-L (2006) Modeling transient absorption and thermal conductivity in a simple nanofluid. Nano Lett 6(6):1224-1228. doi: 10.1021/nl060670o
-
(2006)
Nano Lett
, vol.6
, Issue.6
, pp. 1224-1228
-
-
Vladkov, M.1
Barrat, J.-L.2
-
68
-
-
71749085539
-
Self-assembled peptide nanorods as building blocks of fractal patterns
-
10.1039/b919782f 1:CAS:528:DC%2BD1MXhsVyqsr3I
-
Wang W, Chau Y (2009) Self-assembled peptide nanorods as building blocks of fractal patterns. Soft Matter 5(24):4893-4898
-
(2009)
Soft Matter
, vol.5
, Issue.24
, pp. 4893-4898
-
-
Wang, W.1
Chau, Y.2
-
69
-
-
33750694638
-
Heat transfer characteristics of nanofluids: A review
-
10.1016/j.ijthermalsci.2006.06.010
-
Wang X-Q, Mujumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46(1):1-19
-
(2007)
Int J Therm Sci
, vol.46
, Issue.1
, pp. 1-19
-
-
Wang, X.-Q.1
Mujumdar, A.S.2
-
70
-
-
0033339009
-
Thermal conductivity of nanoparticle-fluid mixture
-
10.2514/2.6486 1:CAS:528:DyaK1MXntFCltrw%3D
-
Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transfer 13(4):474-480
-
(1999)
J Thermophys Heat Transfer
, vol.13
, Issue.4
, pp. 474-480
-
-
Wang, X.1
Xu, X.2
Choi, S.U.S.3
-
73
-
-
39649109213
-
Review and comparison of nanofluid thermal conductivity and heat transfer enhancements
-
10.1080/01457630701850851 1:CAS:528:DC%2BD1cXit1Clur8%3D
-
Yu W, France DM, Routbort JL, Choi SUS (2008) Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng 29(5):432-460
-
(2008)
Heat Transf Eng
, vol.29
, Issue.5
, pp. 432-460
-
-
Yu, W.1
France, D.M.2
Routbort, J.L.3
Choi, S.U.S.4
-
74
-
-
33746823278
-
Effective thermal conductivity in nanofluids of nonspherical particles with interfacial thermal resistance: Differential effective medium theory
-
10.1063/1.2216874
-
Zhou XF, Gao L (2006) Effective thermal conductivity in nanofluids of nonspherical particles with interfacial thermal resistance: differential effective medium theory. J Appl Phys 100(2):024913-024916
-
(2006)
J Appl Phys
, vol.100
, Issue.2
, pp. 024913-024916
-
-
Zhou, X.F.1
Gao, L.2
|