-
1
-
-
79960906976
-
Modeling and experiment of shuttling speed effects on the OSTRYCH
-
10.1016/j.applthermaleng.2011.05.005
-
J.J. Chen, Y.T. Yang, Modeling and experiment of shuttling speed effects on the OSTRYCH. Appl. Therm. Eng. 31, 2797-2807 (2011)
-
(2011)
Appl. Therm. Eng.
, vol.31
, pp. 2797-2807
-
-
Chen, J.J.1
Yang, Y.T.2
-
2
-
-
40349097797
-
Temperature distribution effects on micro-CFPCR performance
-
10.1007/s10544-007-9119-6
-
P.C. Chen, D.E. Nikitopoulos, S.A. Soper, M.C. Murphy, Temperature distribution effects on micro-CFPCR performance. Biomed. Microdevices 10, 141-152 (2008)
-
(2008)
Biomed. Microdevices
, vol.10
, pp. 141-152
-
-
Chen, P.C.1
Nikitopoulos, D.E.2
Soper, S.A.3
Murphy, M.C.4
-
3
-
-
73149111034
-
A palmtop PCR system with a disposable polymer chip operated by the thermosiphon effect
-
10.1039/b915022f
-
K.H. Chung, S.H. Park, Y.H. Choi, A palmtop PCR system with a disposable polymer chip operated by the thermosiphon effect. Lab Chip 10, 202-210 (2010)
-
(2010)
Lab Chip
, vol.10
, pp. 202-210
-
-
Chung, K.H.1
Park, S.H.2
Choi, Y.H.3
-
4
-
-
60649085551
-
Real-time PCR microfluidic devices with concurrent electrochemical detection
-
10.1016/j.bios.2008.11.009
-
T.H. Fang, N. Ramalingam, D. Xian-Dui, T.S. Ngin, Z. Xianting, A.T. Lai Kuan, E.Y. Peng Huat, G. Hai-Qing, Real-time PCR microfluidic devices with concurrent electrochemical detection. Biosens. Bioelectron. 24, 2131-2136 (2009)
-
(2009)
Biosens. Bioelectron.
, vol.24
, pp. 2131-2136
-
-
Fang, T.H.1
Ramalingam, N.2
Xian-Dui, D.3
Ngin, T.S.4
Xianting, Z.5
Lai Kuan, A.T.6
Peng Huat, E.Y.7
Hai-Qing, G.8
-
5
-
-
36048995958
-
Reverse transcription-polymerase chain reaction (RT-PCR) in flow-through micro-reactors: Thermal and fluidic concepts
-
10.1016/j.cej.2007.07.019
-
J. Felbel, A. Reichert, M. Kielpinski, M. Urban, T. Henkel, N. Häfner, M. Dürst, J. Weber, Reverse transcription-polymerase chain reaction (RT-PCR) in flow-through micro-reactors: thermal and fluidic concepts. Chem. Eng. J. 135S, S298-S302 (2008)
-
(2008)
Chem. Eng. J.
, vol.135
-
-
Felbel, J.1
Reichert, A.2
Kielpinski, M.3
Urban, M.4
Henkel, T.5
Häfner, N.6
Dürst, M.7
Weber, J.8
-
6
-
-
79960906042
-
Ultra-rapid flow-through polymerase chain reaction microfluidics using vapor pressure
-
10.1016/j.bios.2011.06.022
-
Y. Fuchiwaki, H. Nagai, M. Saito, E. Tamiya, Ultra-rapid flow-through polymerase chain reaction microfluidics using vapor pressure. Biosens. Bioelectron. 27, 88-94 (2011)
-
(2011)
Biosens. Bioelectron.
, vol.27
, pp. 88-94
-
-
Fuchiwaki, Y.1
Nagai, H.2
Saito, M.3
Tamiya, E.4
-
7
-
-
10644277303
-
Rapid PCR in a continuous flow device
-
10.1039/b406860b
-
M. Hashimoto, P.C. Chen, M.W. Mitchell, D.E. Nikitopoulos, S.A. Soper, M.C. Murphy, Rapid PCR in a continuous flow device. Lab Chip 4, 638-645 (2004)
-
(2004)
Lab Chip
, vol.4
, pp. 638-645
-
-
Hashimoto, M.1
Chen, P.C.2
Mitchell, M.W.3
Nikitopoulos, D.E.4
Soper, S.A.5
Murphy, M.C.6
-
8
-
-
0003397084
-
-
10 McGraw-Hill New York
-
J.P. Holman, Heat Transfer, 10th edn. (McGraw-Hill, New York, 2009)
-
(2009)
Heat Transfer
-
-
Holman, J.P.1
-
9
-
-
40949165357
-
Enhancement of thermal uniformity for a microthermal cycler and its application for polymerase chain reaction
-
10.1016/j.snb.2007.10.063
-
T.M. Hsieh, C.H. Luo, F.C. Huang, J.H. Wang, L.J. Chien, G.B. Lee, Enhancement of thermal uniformity for a microthermal cycler and its application for polymerase chain reaction. Sensors Actuators B Chem. 130, 848-856 (2008)
-
(2008)
Sensors Actuators B Chem.
, vol.130
, pp. 848-856
-
-
Hsieh, T.M.1
Luo, C.H.2
Huang, F.C.3
Wang, J.H.4
Chien, L.J.5
Lee, G.B.6
-
10
-
-
33644970782
-
Fabrication and characterization of a PDMS-glass hybrid continuous-flow PCR chip
-
10.1016/j.bej.2005.02.032
-
J.A. Kim, J.Y. Lee, S. Seong, S.H. Cha, S.H. Lee, J.J. Kim, T.H. Park, Fabrication and characterization of a PDMS-glass hybrid continuous-flow PCR chip. Biochem. Eng. J. 29, 91-97 (2006)
-
(2006)
Biochem. Eng. J.
, vol.29
, pp. 91-97
-
-
Kim, J.A.1
Lee, J.Y.2
Seong, S.3
Cha, S.H.4
Lee, S.H.5
Kim, J.J.6
Park, T.H.7
-
11
-
-
0032524099
-
Chemical amplification: Continuous-flow PCR on a chip
-
10.1126/science.280.5366.1046
-
M.U. Kopp, A.J.D. Mello, A. Manz, Chemical amplification: continuous-flow PCR on a chip. Science 280, 1046-1048 (1998)
-
(1998)
Science
, vol.280
, pp. 1046-1048
-
-
Kopp, M.U.1
Mello, A.J.D.2
Manz, A.3
-
12
-
-
79551489565
-
Fast identification of foodborne pathogenic viruses using continuous-flow reverse transcription-PCR with fluorescence detection
-
10.1007/s10404-010-0675-3
-
Y. Li, C. Zhang, D. Xing, Fast identification of foodborne pathogenic viruses using continuous-flow reverse transcription-PCR with fluorescence detection. Microfluid. Nanofluid. 10, 367-380 (2011)
-
(2011)
Microfluid. Nanofluid.
, vol.10
, pp. 367-380
-
-
Li, Y.1
Zhang, C.2
Xing, D.3
-
13
-
-
79955970718
-
On-chip PCR amplification of genomic and viral templates in unprocessed whole blood
-
10.1007/s10404-010-0702-4
-
D.P. Manage, Y.C. Morrissey, A.J. Stickel, J. Lauzon, A. Atrazhev, J.P. Acker, L.M. Pilarski, On-chip PCR amplification of genomic and viral templates in unprocessed whole blood. Microfluid. Nanofluid. 10, 697-702 (2011)
-
(2011)
Microfluid. Nanofluid.
, vol.10
, pp. 697-702
-
-
Manage, D.P.1
Morrissey, Y.C.2
Stickel, A.J.3
Lauzon, J.4
Atrazhev, A.5
Acker, J.P.6
Pilarski, L.M.7
-
14
-
-
34447344443
-
Numerical and experimental study of a droplet-based PCR chip
-
10.1007/s10404-007-0153-8
-
S. Mohr, Y.H. Zhang, A. Macaskill, P.J.R. Day, R.W. Barber, N.J. Goddard, D.R. Emerson, P.R. Fielden, Numerical and experimental study of a droplet-based PCR chip. Microfluid. Nanofluid. 3, 611-621 (2007)
-
(2007)
Microfluid. Nanofluid.
, vol.3
, pp. 611-621
-
-
Mohr, S.1
Zhang, Y.H.2
Macaskill, A.3
Day, P.J.R.4
Barber, R.W.5
Goddard, N.J.6
Emerson, D.R.7
Fielden, P.R.8
-
15
-
-
72849151713
-
An optimal design method for preventing air bubbles in high-temperature microfluidic devices
-
10.1007/s00216-009-3160-7
-
T. Nakayama, H.M. Hiep, S. Furui, Y. Yonezawa, M. Saito, Y. Takamura, E. Tamiya, An optimal design method for preventing air bubbles in high-temperature microfluidic devices. Anal. Bioanal. Chem. 396, 457-464 (2010)
-
(2010)
Anal. Bioanal. Chem.
, vol.396
, pp. 457-464
-
-
Nakayama, T.1
Hiep, H.M.2
Furui, S.3
Yonezawa, Y.4
Saito, M.5
Takamura, Y.6
Tamiya, E.7
-
16
-
-
0001878651
-
DNA amplification in a microfabricated reaction chamber
-
M.A. Northrup, M.T. Ching, R.M. White, R.T. Wltson (1993) DNA amplification in a microfabricated reaction chamber. In: Proceeding of the 7th international conference of solid state sensors and actuators, Yokohama, Japan, pp 924-926
-
(1993)
Proceeding of the 7th International Conference of Solid State Sensors and Actuators, Yokohama, Japan
, pp. 924-926
-
-
Northrup, M.A.1
Ching, M.T.2
White, R.M.3
Wltson, R.T.4
-
17
-
-
0141426476
-
Continuous-flow DNA and RNA amplification chip combined with laser-induced fluorescence detection
-
10.1016/S0003-2670(03)00898-5
-
P.J. Obeid, T.K. Christopoulos, Continuous-flow DNA and RNA amplification chip combined with laser-induced fluorescence detection. Anal. Chim. Acta 494, 1-9 (2003)
-
(2003)
Anal. Chim. Acta
, vol.494
, pp. 1-9
-
-
Obeid, P.J.1
Christopoulos, T.K.2
-
18
-
-
78049260089
-
A large volume, portable, real-time PCR reactor
-
10.1039/c0lc00038h
-
X. Qiu, M.G. Mauk, D. Chen, C. Liu, H.H. Bau, A large volume, portable, real-time PCR reactor. Lab Chip 10, 3170-3177 (2010)
-
(2010)
Lab Chip
, vol.10
, pp. 3170-3177
-
-
Qiu, X.1
Mauk, M.G.2
Chen, D.3
Liu, C.4
Bau, H.H.5
-
19
-
-
0022372670
-
Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia
-
10.1126/science.2999980
-
R.K. Saiki, S. Scharf, F. Faloona, K.B. Mullis, G.T. Horn, H.A. Erlich, N. Arnheim, Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1950-1954 (1985)
-
(1985)
Science
, vol.230
, pp. 1950-1954
-
-
Saiki, R.K.1
Scharf, S.2
Faloona, F.3
Mullis, K.B.4
Horn, G.T.5
Erlich, H.A.6
Arnheim, N.7
-
20
-
-
10744227060
-
Miniaturized flow-through PCR with different template types in a silicon chip thermocycler
-
10.1039/b103846j
-
I. Schneegaß, R. Bräutigam, J.M. Köhler, Miniaturized flow-through PCR with different template types in a silicon chip thermocycler. Lab Chip 1, 42-49 (2001)
-
(2001)
Lab Chip
, vol.1
, pp. 42-49
-
-
Schneegaß, I.1
Bräutigam, R.2
Köhler, J.M.3
-
21
-
-
31144432663
-
Parylene-strengthened thermal isolation technology for microfluidic system-on-chip applications
-
10.1016/j.sna.2005.09.024
-
C.Y. Shih, Y. Chen, Y.C. Tai, Parylene-strengthened thermal isolation technology for microfluidic system-on-chip applications. Sensors Actuators A Phys. 126, 270-276 (2006)
-
(2006)
Sensors Actuators A Phys.
, vol.126
, pp. 270-276
-
-
Shih, C.Y.1
Chen, Y.2
Tai, Y.C.3
-
22
-
-
0037095347
-
A heater-integrated transparent microchannel chip for continuous-flow PCR
-
10.1016/S0925-4005(02)00016-3
-
K. Sun, A. Yamaguchi, Y. Ishida, S. Matsuo, H. Misawa, A heater-integrated transparent microchannel chip for continuous-flow PCR. Sensors Actuators B Chem. 84, 283-289 (2002)
-
(2002)
Sensors Actuators B Chem.
, vol.84
, pp. 283-289
-
-
Sun, K.1
Yamaguchi, A.2
Ishida, Y.3
Matsuo, S.4
Misawa, H.5
-
23
-
-
22544441945
-
Droplet-based micro oscillating-flow PCR chip
-
10.1088/0960-1317/15/8/001
-
W. Wang, Z.X. Li, R. Luo, S.H. Lü, A.D. Xu, Y.J. Yang, Droplet-based micro oscillating-flow PCR chip. J. Micromech. Microeng. 15, 1369-1377 (2005)
-
(2005)
J. Micromech. Microeng.
, vol.15
, pp. 1369-1377
-
-
Wang, W.1
Li, Z.X.2
Luo, R.3
Lü, S.H.4
Xu, A.D.5
Yang, Y.J.6
-
24
-
-
0025965114
-
Rapid cycle DNA amplification: Time and temperature optimization
-
C.T. Wittwer, D.J. Garling, Rapid cycle DNA amplification: time and temperature optimization. Biotechniques 10, 76-83 (1991)
-
(1991)
Biotechniques
, vol.10
, pp. 76-83
-
-
Wittwer, C.T.1
Garling, D.J.2
-
25
-
-
12344272687
-
Cost-effective thermal isolation techniques for use on microfabricated DNA amplification and analysis devices
-
10.1088/0960-1317/15/1/031
-
M. Yang, R. Pal, M.A. Burns, Cost-effective thermal isolation techniques for use on microfabricated DNA amplification and analysis devices. J. Micromech. Microeng. 15, 221-230 (2005)
-
(2005)
J. Micromech. Microeng.
, vol.15
, pp. 221-230
-
-
Yang, M.1
Pal, R.2
Burns, M.A.3
-
26
-
-
24144494613
-
Micro flow-through PCR in a PMMA chip fabricated by KrF excimer laser
-
10.1007/s10544-005-3999-0
-
L. Yao, B. Liu, T. Chen, S. Liu, T. Zuo, Micro flow-through PCR in a PMMA chip fabricated by KrF excimer laser. Biomed. Microdevices 7, 253-257 (2005)
-
(2005)
Biomed. Microdevices
, vol.7
, pp. 253-257
-
-
Yao, L.1
Liu, B.2
Chen, T.3
Liu, S.4
Zuo, T.5
-
27
-
-
39149140002
-
Fabrication and characterization of a flow-through PCR device with integrated chromium resistive heaters
-
10.1016/j.jcice.2007.05.001
-
C. Yu, W. Liang, I. Kuan, C. Wei, W. Gu, Fabrication and characterization of a flow-through PCR device with integrated chromium resistive heaters. J. Chin. Inst. Chem. Eng. 38, 333-339 (2007)
-
(2007)
J. Chin. Inst. Chem. Eng.
, vol.38
, pp. 333-339
-
-
Yu, C.1
Liang, W.2
Kuan, I.3
Wei, C.4
Gu, W.5
-
28
-
-
77950827380
-
Microfluidic gradient PCR (MG-PCR): A new method for microfluidic DNA amplification
-
2779956 1216.15007 10.1007/s10544-009-9352-2
-
C. Zhang, D. Xing, Microfluidic gradient PCR (MG-PCR): a new method for microfluidic DNA amplification. Biomed. Microdevices 12, 1-12 (2010)
-
(2010)
Biomed. Microdevices
, vol.12
, pp. 1-12
-
-
Zhang, C.1
Xing, D.2
|