-
1
-
-
84879634297
-
-
Technical report, University of Michigan, Ann Arbor, MI
-
E. Bayraktar and A. Fahim, A Stochastic Approximation for Fully Nonlinear Free Boundary Problems, Technical report, University of Michigan, Ann Arbor, MI, 2011; available online from http://arxiv.org/abs/1109.5752.
-
(2011)
A Stochastic Approximation for Fully Nonlinear Free Boundary Problems
-
-
Bayraktar, E.1
Fahim, A.2
-
2
-
-
84861785838
-
Optimal stopping for dynamic convex risk measures
-
E. Bayraktar, I. Karatzas, and S. Yao, Optimal stopping for dynamic convex risk measures, Illinois J. Math., 54 (2010), pp. 1025-1067.
-
(2010)
Illinois J. Math
, vol.54
, pp. 1025-1067
-
-
Bayraktar, E.1
Karatzas, I.2
Yao, S.3
-
3
-
-
78650278734
-
Optimal stopping for non-linear expectations-Part i
-
E. Bayraktar and S. Yao, Optimal stopping for non-linear expectations-Part I, Stochastic Process. Appl., 121 (2011), pp. 185-211.
-
(2011)
Stochastic Process. Appl
, vol.121
, pp. 185-211
-
-
Bayraktar, E.1
Yao, S.2
-
4
-
-
78650278734
-
Optimal stopping for non-linear expectations-Part II
-
E. Bayraktar and S. Yao, Optimal stopping for non-linear expectations-Part II, Stochastic Process. Appl., 121 (2011), pp. 212-264.
-
(2011)
Stochastic Process. Appl
, vol.121
, pp. 212-264
-
-
Bayraktar, E.1
Yao, S.2
-
5
-
-
82255186343
-
Proving regularity of the minimal probability of ruin via a game of stopping and control
-
E. Bayraktar and V. R. Young, Proving regularity of the minimal probability of ruin via a game of stopping and control, Finance Stoch., 15 (2011), pp. 785-818.
-
(2011)
Finance Stoch
, vol.15
, pp. 785-818
-
-
Bayraktar, E.1
Young, V.R.2
-
6
-
-
84879626046
-
Introduction to stochastic control of mixed diffusion processes, viscosity solutions and applications in finance and insurance
-
Preprint
-
B. Bouchard, Introduction to Stochastic Control of Mixed Diffusion Processes, Viscosity Solutions and Applications in Finance and Insurance, Lecture Notes Preprint, 2007; available online from http://www.ceremade. dauphine.fr/~bouchard/pdf/PolyContSto.pdf.
-
(2007)
Lecture Notes
-
-
Bouchard, B.1
-
7
-
-
84879615036
-
-
Universit'e Paris Dauphine, Paris, and Columbia University, New York
-
B. Bouchard, L. Moreau, and M. Nutz, Stochastic Target Games with Controlled Loss, Technical report, Universit'e Paris Dauphine, Paris, and Columbia University, New York, 2012; available online from http://arxiv.org/abs/ 1206.6325.
-
(2012)
Stochastic Target Games with Controlled Loss, Technical Report
-
-
Bouchard, B.1
Moreau, L.2
Nutz, M.3
-
8
-
-
79960347909
-
Weak dynamic programming principle for viscosity solutions
-
B. Bouchard and N. Touzi, Weak dynamic programming principle for viscosity solutions, SIAM J. Control Optim., 49 (2011), pp. 948-962.
-
(2011)
SIAM J. Control Optim
, vol.49
, pp. 948-962
-
-
Bouchard, B.1
Touzi, N.2
-
9
-
-
55349131010
-
Stochastic differential games and viscosity solutions of Hamilton- Jacobi-Bellman-Isaacs equations
-
R. Buckdahn and J. Li, Stochastic differential games and viscosity solutions of Hamilton- Jacobi-Bellman-Isaacs equations, SIAM J. Control Optim., 47 (2008), pp. 444-475.
-
(2008)
SIAM J. Control Optim
, vol.47
, pp. 444-475
-
-
Buckdahn, R.1
Li, J.2
-
10
-
-
84967708673
-
User's guide to viscosity solutions of second order partial differential equations
-
M. G. Crandall, H. Ishii, and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), pp. 1-67.
-
(1992)
Bull. Amer. Math. Soc. (N.S.)
, vol.27
, pp. 1-67
-
-
Crandall, M.G.1
Ishii, H.2
Lions, P.-L.3
-
11
-
-
0003535772
-
-
Allyn and Bacon, Boston, MA
-
J. Dugundji, Topology, Allyn and Bacon, Boston, MA, 1966.
-
(1966)
Topology
-
-
Dugundji, J.1
-
12
-
-
0016049582
-
Boundary value problems for nonlinear partial differential operators
-
R. J. Elliott and N. J. Kalton, Boundary value problems for nonlinear partial differential operators, J. Math. Anal. Appl., 46 (1974), pp. 228-241.
-
(1974)
J. Math. Anal. Appl
, vol.46
, pp. 228-241
-
-
Elliott, R.J.1
Kalton, N.J.2
-
13
-
-
84968464836
-
Cauchy problems for certain Isaacs-Bellman equations and games of survival
-
R. J. Elliott and N. J. Kalton, Cauchy problems for certain Isaacs-Bellman equations and games of survival, Trans. Amer. Math. Soc., 198 (1974), pp. 45-72.
-
(1974)
Trans. Amer. Math. Soc
, vol.198
, pp. 45-72
-
-
Elliott, R.J.1
Kalton, N.J.2
-
14
-
-
0000097584
-
On the existence of value functions of two-player, zero-sum stochastic differential games
-
W. H. Fleming and P. E. Souganidis, On the existence of value functions of two-player, zero-sum stochastic differential games, Indiana Univ. Math. J., 38 (1989), pp. 293-314.
-
(1989)
Indiana Univ. Math. J.
, vol.38
, pp. 293-314
-
-
Fleming, W.H.1
Souganidis, P.E.2
-
15
-
-
33947240908
-
Mixed zero-sum stochastic differential game and American game options
-
S. Hamadène, Mixed zero-sum stochastic differential game and American game options, SIAM J. Control Optim., 45 (2006), pp. 496-518.
-
(2006)
SIAM J. Control Optim
, vol.45
, pp. 496-518
-
-
Hamadène, S.1
-
17
-
-
0000789873
-
Hedging american contingent claims with constrained portfolios
-
I. Karatzas and S. G. Kou, Hedging American contingent claims with constrained portfolios, Finance Stoch., 2 (1998), pp. 215-258.
-
(1998)
Finance Stoch
, vol.2
, pp. 215-258
-
-
Karatzas, I.1
Kou, S.G.2
-
18
-
-
0003242243
-
Brownian motion and stochastic calculus
-
2nd ed. Springer-Verlag, New York
-
I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed., Grad. Texts in Math. 113, Springer-Verlag, New York, 1991.
-
(1991)
Grad. Texts in Math
, vol.113
-
-
Karatzas, I.1
Shreve, S.E.2
-
19
-
-
0011315915
-
Methods of mathematical finance
-
Springer-Verlag, New York
-
I. Karatzas and S. E. Shreve, Methods of Mathematical Finance, Appl. Math. (N. Y.) 39, Springer-Verlag, New York, 1998.
-
(1998)
Appl. Math. (N. Y.)
, vol.39
-
-
Karatzas, I.1
Shreve, S.E.2
-
20
-
-
0035562831
-
The controller-and-stopper game for a linear diffusion
-
I. Karatzas and W. D. Sudderth, The controller-and-stopper game for a linear diffusion, Ann. Probab., 29 (2001), pp. 1111-1127.
-
(2001)
Ann. Probab
, vol.29
, pp. 1111-1127
-
-
Karatzas, I.1
Sudderth, W.D.2
-
21
-
-
0034318222
-
A barrier option of American type
-
I. Karatzas and H. Wang, A barrier option of American type, Appl. Math. Optim., 42 (2000), pp. 259-279.
-
(2000)
Appl. Math. Optim
, vol.42
, pp. 259-279
-
-
Karatzas, I.1
Wang, H.2
-
22
-
-
67649247822
-
Game approach to the optimal stopping problem
-
I. Karatzas and I.-M. Zamfirescu, Game approach to the optimal stopping problem, Stochastics, 77 (2005), pp. 401-435.
-
(2005)
Stochastics
, vol.77
, pp. 401-435
-
-
Karatzas, I.1
Zamfirescu, I.-M.2
-
23
-
-
52049120573
-
Martingale approach to stochastic differential games of control and stopping
-
I. Karatzas and I.-M. Zamfirescu, Martingale approach to stochastic differential games of control and stopping, Ann. Probab., 36 (2008), pp. 1495-1527.
-
(2008)
Ann. Probab
, vol.36
, pp. 1495-1527
-
-
Karatzas, I.1
Zamfirescu, I.-M.2
-
24
-
-
0007282196
-
Controlled diffusion processes
-
Springer-Verlag, New York
-
N. V. Krylov, Controlled Diffusion Processes, Appl. Math. 14, Springer-Verlag, New York, 1980.
-
(1980)
Appl. Math
, vol.14
-
-
Krylov, N.V.1
-
25
-
-
0041014417
-
The gambler and the stopper
-
Institute of Mathematical Statistics, Hayward, CA
-
A. P. Maitra and W. D. Sudderth, The gambler and the stopper, in Statistics, Probability and Game Theory, IMS Lecture Notes Monogr. Ser. 30, Institute of Mathematical Statistics, Hayward, CA, 1996, pp. 191-208.
-
(1996)
Statistics, Probability and Game Theory, IMS Lecture Notes Monogr. Ser. 30
, pp. 191-208
-
-
Maitra, A.P.1
Sudderth, W.D.2
-
27
-
-
84859098453
-
A quasi-sure approach to the control of non-Markovian stochastic differential equations
-
M. Nutz, A quasi-sure approach to the control of non-Markovian stochastic differential equations, Electron. J. Probab., 17 (2012), pp. 1-23.
-
(2012)
Electron. J. Probab
, vol.17
, pp. 1-23
-
-
Nutz, M.1
-
28
-
-
0031677847
-
Optimal stopping of controlled jump diffusion processes: A viscosity solution approach
-
H. Pham, Optimal stopping of controlled jump diffusion processes: A viscosity solution approach, J. Math. Systems Estim. Control, 8 (1998), pp. 1-27.
-
(1998)
J. Math. Systems Estim. Control
, vol.8
, pp. 1-27
-
-
Pham, H.1
-
29
-
-
79957442000
-
Continuous-time stochastic control and optimization with financial applications
-
Springer-Verlag, Berlin
-
H. Pham, Continuous-Time Stochastic Control and Optimization with Financial Applications, Stochastic Model. Appl. Probab. 61, Springer-Verlag, Berlin, 2009.
-
(2009)
Stochastic Model. Appl. Probab
, vol.61
-
-
Pham, H.1
-
30
-
-
0004247178
-
-
2nd ed., Cambridge University Press, Cambridge, UK
-
D. W. Stroock, Probability Theory, 2nd ed., Cambridge University Press, Cambridge, UK, 2011.
-
(2011)
Probability Theory
-
-
Stroock, D.W.1
-
31
-
-
62049084141
-
Multidimensional diffusion processes
-
Springer-Verlag, Berlin
-
D. W. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, Classics Math., Springer-Verlag, Berlin, 2006.
-
(2006)
Classics Math
-
-
Stroock, D.W.1
Varadhan, S.R.S.2
-
32
-
-
33745781502
-
A controller and a stopper game with degenerate variance control
-
A. Weerasinghe, A controller and a stopper game with degenerate variance control, Electron. Comm. Probab., 11 (2006), pp. 89-99.
-
(2006)
Electron. Comm. Probab
, vol.11
, pp. 89-99
-
-
Weerasinghe, A.1
|