메뉴 건너뛰기




Volumn 62, Issue 9, 2013, Pages 739-746

A stability test for non-commensurate fractional order systems

Author keywords

Cauchy's theorem; Non commensurate fractional order systems; Stability

Indexed keywords

A-STABILITY; BOUNDED INPUT; CAUCHY'S THEOREM; FRACTIONAL-ORDER SYSTEMS; ITS EFFICIENCIES; NUMERICAL EXAMPLE; OUTPUT STABILITY; SUFFICIENT CONDITIONS;

EID: 84879618530     PISSN: 01676911     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sysconle.2013.04.008     Document Type: Article
Times cited : (52)

References (17)
  • 1
    • 0002731965 scopus 로고    scopus 로고
    • Stability results on fractional differential equations with applications to control processing
    • Lille, France
    • D. Matignon, Stability results on fractional differential equations with applications to control processing, in: Computational Engineering in Systems Applications, Vol. 2, Lille, France, 1996, pp. 963-968.
    • (1996) Computational Engineering in Systems Applications , vol.2 , pp. 963-968
    • Matignon, D.1
  • 3
    • 76649139783 scopus 로고    scopus 로고
    • LMI stability conditions for fractional order systems
    • 10.1016/j.camwa.2009.08.003
    • J. Sabatier, M. Moze, and C. Farges LMI stability conditions for fractional order systems Computers & Mathematics with Applications 59 5 2010 1594 1609 10.1016/j.camwa.2009.08.003
    • (2010) Computers & Mathematics with Applications , vol.59 , Issue.5 , pp. 1594-1609
    • Sabatier, J.1    Moze, M.2    Farges, C.3
  • 4
    • 77956400175 scopus 로고    scopus 로고
    • Pseudo-state feedback stabilization of commensurate fractional order systems
    • 10.1016/j.automatica.2010.06.038
    • C. Farges, M. Moze, and J. Sabatier Pseudo-state feedback stabilization of commensurate fractional order systems Automatica 46 10 2010 1730 1734 10.1016/j.automatica.2010.06.038
    • (2010) Automatica , vol.46 , Issue.10 , pp. 1730-1734
    • Farges, C.1    Moze, M.2    Sabatier, J.3
  • 5
    • 78049350845 scopus 로고    scopus 로고
    • A Lyapunov approach to the stability of fractional differential equations
    • 10.1016/j.sigpro.2010.04.024
    • J.-C. Trigeassou, N. Maamri, J. Sabatier, and A. Oustaloup A Lyapunov approach to the stability of fractional differential equations Signal Processing 91 3 2011 437 445 10.1016/j.sigpro.2010.04.024
    • (2011) Signal Processing , vol.91 , Issue.3 , pp. 437-445
    • Trigeassou, J.-C.1    Maamri, N.2    Sabatier, J.3    Oustaloup, A.4
  • 6
    • 84861714671 scopus 로고    scopus 로고
    • Fractional order polytopic systems: Robust stability and stabilisation
    • 10.1186/1687-1847-2011-35
    • C. Farges, J. Sabatier, and M. Moze Fractional order polytopic systems: robust stability and stabilisation Advances in Difference Equations 35 2011 10.1186/1687-1847-2011-35
    • (2011) Advances in Difference Equations , Issue.35
    • Farges, C.1    Sabatier, J.2    Moze, M.3
  • 8
    • 0001110962 scopus 로고    scopus 로고
    • Coprime factorizations and stability of fractional differential systems
    • C. Bonnet, and J. Partington Coprime factorizations and stability of fractional differential systems Systems & Control Letters 41 3 2000 167 174
    • (2000) Systems & Control Letters , vol.41 , Issue.3 , pp. 167-174
    • Bonnet, C.1    Partington, J.2
  • 9
    • 0036642801 scopus 로고    scopus 로고
    • Analysis of fractional delay systems of retarded and neutral type
    • DOI 10.1016/S0005-1098(01)00306-5, PII S0005109801003065
    • C. Bonnet, and J. Partington Analysis of fractional delay systems of retarded and neutral type Automatica 38 7 2002 1133 1138 (Pubitemid 34524669)
    • (2002) Automatica , vol.38 , Issue.7 , pp. 1133-1138
    • Bonnet, C.1    Partington, J.R.2
  • 10
    • 33645135087 scopus 로고    scopus 로고
    • A numerical algorithm for stability testing of fractional delay systems
    • C. Hwang, and Y. Cheng A numerical algorithm for stability testing of fractional delay systems Automatica 42 5 2006 825 831
    • (2006) Automatica , vol.42 , Issue.5 , pp. 825-831
    • Hwang, C.1    Cheng, Y.2
  • 15
    • 84981825145 scopus 로고
    • Definition of physically consistent damping laws with fractional derivatives
    • H. Beyer, and S. Kempfle Definition of physically consistent damping laws with fractional derivatives Journal of Applied Mathematics and Mechanics 75 8 1995 623 635
    • (1995) Journal of Applied Mathematics and Mechanics , vol.75 , Issue.8 , pp. 623-635
    • Beyer, H.1    Kempfle, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.