메뉴 건너뛰기




Volumn 94, Issue 6, 2013, Pages 1409-1419

On estimating probability of presence from use-availability or presence-background data

Author keywords

Availability; Background; Identifiability; Logistic; Measuring use vs. non use; Presence background; Prevalence; Resource selection; Species distribution model

Indexed keywords

DATA SET; ECOLOGICAL MODELING; ENVIRONMENTAL CONDITIONS; ERROR ANALYSIS; IDENTIFICATION METHOD; LOGISTICS; NUMERICAL MODEL; POPULATION DISTRIBUTION; RESOURCE SELECTION;

EID: 84879580140     PISSN: 00129658     EISSN: None     Source Type: Journal    
DOI: 10.1890/12-1520.1     Document Type: Article
Times cited : (125)

References (32)
  • 1
    • 84867412542 scopus 로고    scopus 로고
    • Comparative interpretation of count presence-absence and point methods for species distribution models
    • Aarts, G., J. Fieberg, and J. Matthiopoulos. 2012. Comparative interpretation of count, presence-absence and point methods for species distribution models. Methods in Ecology and Evolution 3:177-187.
    • (2012) Methods in Ecology and Evolution , vol.3 , pp. 177-187
    • Aarts, G.1    Fieberg, J.2    Matthiopoulos, J.3
  • 2
    • 39549116366 scopus 로고    scopus 로고
    • Estimating space-use and habitat preference from wildlife telemetry data
    • DOI 10.1111/j.2007.0906-7590.05236.x
    • Aarts, G., M. MacKenzie, B. McConnell, M. Fedak, and J. Matthiopoulos. 2008. Estimating space-use and habitat preference from wildlife telemetry data. Ecography 31:140-160. (Pubitemid 351280981)
    • (2008) Ecography , vol.31 , Issue.1 , pp. 140-160
    • Aarts, G.1    MacKenzie, M.2    McConnell, B.3    Fedak, M.4    Matthiopoulos, J.5
  • 4
    • 0003043818 scopus 로고    scopus 로고
    • Determining alternative models for vegetation response analysis: A non-parametric approach
    • Bio, A., R. Alkemande, and A. Barendregt. 1998. Determining alternative models for vegetation response analysis: a nonparametric approach. Journal of Vegetation Science 9:5-16. (Pubitemid 28165413)
    • (1998) Journal of Vegetation Science , vol.9 , Issue.1 , pp. 5-16
    • Bio, A.M.F.1    Alkemade, R.2    Barendregt, A.3
  • 8
    • 84871659770 scopus 로고    scopus 로고
    • Predicting the geographic distribution of a species from presence-only data subject to detection errors
    • Dorazio, R. 2012. Predicting the geographic distribution of a species from presence-only data subject to detection errors. Biometrics 68:1303-1312.
    • (2012) Biometrics , vol.68 , pp. 1303-1312
    • Dorazio, R.1
  • 9
    • 33645917058 scopus 로고    scopus 로고
    • Novel methods improve prediction of species' distributions from occurrence data
    • Elith, J., et al. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29: 129-151.
    • (2006) Ecography , vol.29 , pp. 129-151
    • Elith, J.1
  • 11
    • 0036934092 scopus 로고    scopus 로고
    • Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Species-level modelling
    • DOI 10.1023/A:1021302930424
    • Ferrier, S., G. Watson, J. Pearce, and M. Drielsma. 2002. Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. 1. Species-level modelling. Biodiversity and Conservation 11:2275-2307. (Pubitemid 36072839)
    • (2002) Biodiversity and Conservation , vol.11 , Issue.12 , pp. 2275-2307
    • Ferrier, S.1    Watson, G.2    Pearce, J.3    Drielsma, M.4
  • 13
    • 54049102026 scopus 로고    scopus 로고
    • Not as good as they seem: The importance of concepts in species distribution modelling
    • Jiménez-Valverde, A., J. M. Lobo, and J. Hortal. 2008. Not as good as they seem: the importance of concepts in species distribution modelling. Diversity and Distributions 14:885-890.
    • (2008) Diversity and Distributions , vol.14 , pp. 885-890
    • Jiménez-Valverde, A.1    Lobo, J.M.2    Hortal, J.3
  • 14
    • 33646272322 scopus 로고    scopus 로고
    • Resource selection functions based on use-availability data: Theoretical motivation and evaluation methods
    • DOI 10.2193/0022-541X(2006)70[347:RSFBOU]2.0.CO;2
    • Johnson, C. J., S. E. Nielsen, E. H. Merrill, T. L. McDonald, and M. S. Boyce. 2006. Resource selection functions based on use-availability data: Theoretical motivation and evaluation methods. Journal of Wildlife Management 70:347-357. (Pubitemid 43736900)
    • (2006) Journal of Wildlife Management , vol.70 , Issue.2 , pp. 347-357
    • Johnson, C.J.1    Nielsen, S.E.2    Merrill, E.H.3    McDonald, T.L.4    Boyce, M.S.5
  • 15
    • 12144266865 scopus 로고    scopus 로고
    • Use and interpretation of logistic regression in habitat-selection studies
    • DOI 10.2193/0022-541X(2004)068[0774:UAIOLR]2.0.CO;2
    • Keating, K. A., and S. Cherry. 2004. Use and interpretation of logistic regression in habitat-selection studies. Journal of Wildlife Management 68:774-789. (Pubitemid 40107285)
    • (2004) Journal of Wildlife Management , vol.68 , Issue.4 , pp. 774-789
    • Keating, K.A.1    Cherry, S.2
  • 16
    • 0009206367 scopus 로고    scopus 로고
    • Case-control studies with contaminated controls
    • Lancaster, T., and G. Imbens. 1996. Case-control studies with contaminated controls. Journal of Econometrics 71:145-160. (Pubitemid 126348854)
    • (1996) Journal of Econometrics , vol.71 , Issue.1-2 , pp. 145-160
    • Lancaster, T.1    Imbens, G.2
  • 17
    • 33745601079 scopus 로고    scopus 로고
    • Fitting binary regression models with case-augmented samples
    • DOI 10.1093/biomet/93.2.385
    • Lee, A., A. Scott, and C. Wild. 2006. Fitting binary regression models with case-augmented samples. Biometrika 93:385-397. (Pubitemid 43992199)
    • (2006) Biometrika , vol.93 , Issue.2 , pp. 385-397
    • Lee, A.J.1    Scott, A.J.2    Wild, C.J.3
  • 18
    • 58449092601 scopus 로고    scopus 로고
    • A new method for estimation of resource selection probability function
    • Lele, S. R. 2009. A new method for estimation of resource selection probability function. Journal of Wildlife Management 73:122-127.
    • (2009) Journal of Wildlife Management , vol.73 , pp. 122-127
    • Lele, S.R.1
  • 19
    • 33845691798 scopus 로고    scopus 로고
    • Weighted distributions and estimation of resource selection probability functions
    • DOI 10.1890/0012-9658(2006)87[3021:WDAEOR]2.0.CO;2
    • Lele, S. R., and J. L. Keim. 2006. Weighted distributions and estimation of resource selection probability functions. Ecology 87:3021-3028. (Pubitemid 44969253)
    • (2006) Ecology , vol.87 , Issue.12 , pp. 3021-3028
    • Lele, S.R.1    Keim, J.L.2
  • 20
    • 83055179750 scopus 로고    scopus 로고
    • Can we model the probability of presence of species without absence data
    • Li, W., Q. Guo, and C. Elkan. 2011. Can we model the probability of presence of species without absence dataEcography 34:1096-1105.
    • (2011) Ecography , vol.34 , pp. 1096-1105
    • Li, W.1    Guo, Q.2    Elkan, C.3
  • 22
    • 84860612628 scopus 로고    scopus 로고
    • Inferring prevalence from presence-only data: A response to 'can we model the probability of presence of species without absence data?'
    • Phillips, S. 2012. Inferring prevalence from presence-only data: a response to 'Can we model the probability of presence of species without absence data?' Ecography 35:385-387.
    • (2012) Ecography , vol.35 , pp. 385-387
    • Phillips, S.1
  • 23
    • 27944446350 scopus 로고    scopus 로고
    • Maximum entropy modeling of species geographic distributions
    • DOI 10.1016/j.ecolmodel.2005.03.026, PII S030438000500267X
    • Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190:231-259. (Pubitemid 41680650)
    • (2006) Ecological Modelling , vol.190 , Issue.3-4 , pp. 231-259
    • Phillips, S.J.1    Anderson, R.P.2    Schapire, R.E.3
  • 24
    • 41449100102 scopus 로고    scopus 로고
    • Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation
    • DOI 10.1111/j.0906-7590.2008.5203.x
    • Phillips, S. J., and M. Dudík. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161-175. (Pubitemid 351457533)
    • (2008) Ecography , vol.31 , Issue.2 , pp. 161-175
    • Phillips, S.J.1    Dudik, M.2
  • 25
    • 63849333773 scopus 로고    scopus 로고
    • Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data
    • Phillips, S., M. Dudík, J. Elith, C. Graham, A. Lehmann, J. Leathwick, and S. Ferrier. 2009. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications 19:181-197.
    • (2009) Ecological Applications , vol.19 , pp. 181-197
    • Phillips, S.1    Dudík, M.2    Elith, J.3    Graham, C.4    Lehmann, A.5    Leathwick, J.6    Ferrier, S.7
  • 26
    • 80055054109 scopus 로고    scopus 로고
    • Logistic methods for resource selection functions and presence-only species distribution models
    • San Francisco, California, USA
    • Phillips, S., and J. Elith. 2011. Logistic methods for resource selection functions and presence-only species distribution models. Pages 1384-1389 in Proceedings of the 25th AAAI Conference on Artificial Intelligence, San Francisco, California, USA.
    • (2011) Proceedings of the 25th AAAI Conference on Artificial Intelligence , pp. 1384-1389
    • Phillips, S.1    Elith, J.2
  • 27
    • 0033907676 scopus 로고    scopus 로고
    • On the relationship between niche and distribution
    • DOI 10.1046/j.1461-0248.2000.00143.x
    • Pulliam, H. R. 2000. On the relationship between niche and distribution. Ecology Letters 3:349-361. (Pubitemid 30597802)
    • (2000) Ecology Letters , vol.3 , Issue.4 , pp. 349-361
    • Pulliam, H.R.1
  • 28
    • 0242573339 scopus 로고    scopus 로고
    • Geographical sampling bias and its implications for conservation priorities in Africa
    • DOI 10.1046/j.1365-2699.2003.00946.x
    • Reddy, S., and L. M. Dá valos. 2003. Geographical sampling bias and its implications for conservation priorities in Africa. Journal of Biogeography 30:1719-1727. (Pubitemid 37399756)
    • (2003) Journal of Biogeography , vol.30 , Issue.11 , pp. 1719-1727
    • Reddy, S.1    Davalos, L.M.2
  • 29
    • 84863982602 scopus 로고    scopus 로고
    • Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions
    • Royle, J. A., R. B. Chandler, C. Yackulic, and J. D. Nichols. 2012. Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods in Ecology and Evolution 3(3):545-554.
    • (2012) Methods in Ecology and Evolution , vol.3 , Issue.3 , pp. 545-554
    • Royle, J.A.1    Chandler, R.B.2    Yackulic, C.3    Nichols, J.D.4
  • 30
    • 0039333330 scopus 로고
    • Estimating logistic regression models when the dependent variable has no variance
    • Steinberg, D., and N. S. Cardell. 1992. Estimating logistic regression models when the dependent variable has no variance. Communications in Statistics -Theory and Methods 21(2):423-450.
    • (1992) Communications in Statistics Theory and Methods , vol.21 , Issue.2 , pp. 423-450
    • Steinberg, D.1    Cardell, N.S.2
  • 32
    • 79952680020 scopus 로고    scopus 로고
    • Poisson point process models solve the ''pseudo-absence problem'' for presenceonly data in ecology
    • Warton, D., and L. Shepherd. 2010. Poisson point process models solve the ''pseudo-absence problem'' for presenceonly data in ecology. Annals of Applied Statistics 4:1383-1402.
    • (2010) Annals of Applied Statistics , vol.4 , pp. 1383-1402
    • Warton, D.1    Shepherd, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.