메뉴 건너뛰기




Volumn , Issue , 2010, Pages 33-44

Clustering of high-dimensional data via finite mixture models

Author keywords

Common factor analyzers; Mixtures of factor analyzers; Model based clustering; Normal mixture densities

Indexed keywords

COMMON FACTORS; FACTOR ANALYZERS; FINITE MIXTURE MODELS; HIGH DIMENSIONAL DATA; MODEL-BASED CLUSTERING; NORMAL MIXTURE MODELS; NORMAL MIXTURES; STATISTICAL FRAMEWORK;

EID: 84879579464     PISSN: 14318814     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-642-01044-6-3     Document Type: Conference Paper
Times cited : (2)

References (22)
  • 1
    • 84879597238 scopus 로고    scopus 로고
    • Mixtures of factor analyzers with common factor loadings for the clustering and visualization of high-dimensional data
    • Preprint Series of the Isaac Newton Institute for Mathematical Sciences, Cambridge
    • Baek, J., &McLachlan, G. J. (2008). Mixtures of factor analyzers with common factor loadings for the clustering and visualization of high-dimensional data (Technical Report NI08020-HOP). Preprint Series of the Isaac Newton Institute for Mathematical Sciences, Cambridge.
    • (2008) Technical Report NI08020-HOP
    • Baek, J.1    McLachlan, G.J.2
  • 2
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield, J. D., & Raftery, A. E. (1993). Model-based Gaussian and non-Gaussian clustering. Biometrics, 49, 803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 6
    • 0038454627 scopus 로고    scopus 로고
    • Clusters, outliers and regression: Fixed point clusters
    • Hennig, C. (2003). Clusters, outliers and regression: Fixed point clusters. Journal of Multivariate Analysis, 86, 183-212.
    • (2003) Journal of Multivariate Analysis , vol.86 , pp. 183-212
    • Hennig, C.1
  • 7
    • 24344501318 scopus 로고    scopus 로고
    • Breakdown points for maximum likelihood-estimators of location-scale mixtures
    • Hennig, C. (2004). Breakdown points for maximum likelihood-estimators of location-scale mixtures. Annals of Statistics, 32, 1313-1340.
    • (2004) Annals of Statistics , vol.32 , pp. 1313-1340
    • Hennig, C.1
  • 9
    • 0001294055 scopus 로고
    • The classification and mixture maximum likelihood approaches to cluster analysis
    • P. R. Krishnaiah, & L. Kanal (Eds.). Amsterdam: North-Holland
    • McLachlan, G. J. (1982). The classification and mixture maximum likelihood approaches to cluster analysis. In P. R. Krishnaiah, & L. Kanal (Eds.), Handbook of statistics (Vol. 2, pp. 199-208). Amsterdam: North-Holland.
    • (1982) Handbook of Statistics , vol.2 , pp. 199-208
    • McLachlan, G.J.1
  • 10
    • 34247855883 scopus 로고    scopus 로고
    • Extension of the mixture of factor analyzers model to incorporate the multivariate t distribution
    • McLachlan, G. J., Bean, R. W., & Ben-Tovim Jones, L. (2007). Extension of the mixture of factor analyzers model to incorporate the multivariate t distribution. Computational Statistics and Data Analysis, 51, 5327-5338.
    • (2007) Computational Statistics and Data Analysis , vol.51 , pp. 5327-5338
    • McLachlan, G.J.1    Bean, R.W.2    Ben-Tovim Jones, L.3
  • 11
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model-based approach to the clustering of microarray expression data
    • McLachlan, G. J., Bean, R. W., & Peel, D. (2002). A mixture model-based approach to the clustering of microarray expression data. Bioinformatics, 18, 413-422.
    • (2002) Bioinformatics , vol.18 , pp. 413-422
    • McLachlan, G.J.1    Bean, R.W.2    Peel, D.3
  • 14
    • 84947788012 scopus 로고    scopus 로고
    • Robust cluster analysis via mixtures of multivariate t -distributions
    • Berlin: Springer
    • McLachlan, G. J., & Peel, D. (1998). Robust cluster analysis via mixtures of multivariate t -distributions. Lecture Notes in Computer Science (Vol. 1451, pp. 658-666). Berlin: Springer.
    • (1998) Lecture Notes in Computer Science , vol.1451 , pp. 658-666
    • McLachlan, G.J.1    Peel, D.2
  • 17
    • 18244387717 scopus 로고    scopus 로고
    • The em algorithm - An old folk song sung to a fast new tune (with discussion)
    • Meng, X., & van Dyk, D. (1997). The EM algorithm - an old folk song sung to a fast new tune (with discussion). Journal of the Royal Statistical Society B, 59, 511-567.
    • (1997) Journal of the Royal Statistical Society B , vol.59 , pp. 511-567
    • Meng, X.1    Van Dyk, D.2
  • 20
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statisics, 6, 461-464.
    • (1978) Annals of Statisics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 22
    • 33745590867 scopus 로고    scopus 로고
    • ArrayCluster: An analytic tool for clustering, data visualization and model finder on gene expression profiles
    • Yoshida, R., Higuchi, T., Imoto, S., & Miyano, S. (2006). ArrayCluster: An analytic tool for clustering, data visualization and model finder on gene expression profiles. Bioinformatics, 22, 1538-1539.
    • (2006) Bioinformatics , vol.22 , pp. 1538-1539
    • Yoshida, R.1    Higuchi, T.2    Imoto, S.3    Miyano, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.