메뉴 건너뛰기




Volumn 15, Issue 3, 2013, Pages 501-512

Hydrogen for oil refining via biomass indirect steam gasification: Energy and environmental targets

Author keywords

Energy systems; Gasification; Hydrogen; Process integration; Refinery; Simulation

Indexed keywords

BIOMASS; CARBON DIOXIDE; EMISSION CONTROL; ENERGY EFFICIENCY; EXERGY; FOSSIL FUELS; GASIFICATION; HYDROGEN; HYDROGEN FUELS; PETROLEUM REFINING; STEAM; STEAM ENGINEERING; WASTE HEAT;

EID: 84879421547     PISSN: 1618954X     EISSN: 16189558     Source Type: Journal    
DOI: 10.1007/s10098-013-0591-9     Document Type: Article
Times cited : (25)

References (27)
  • 1
    • 67650745629 scopus 로고    scopus 로고
    • Synergistic routes to liquid fuel for a petroleum-deprived future
    • 10.1002/aic.11785 10.1002/aic.11785 1:CAS:528:DC%2BD1MXnsVOrtrk%3D
    • Agrawal R, Singh NR (2009) Synergistic routes to liquid fuel for a petroleum-deprived future. AIChE J 55(7):1898-1905. doi: 10.1002/aic.11785
    • (2009) AIChE J , vol.55 , Issue.7 , pp. 1898-1905
    • Agrawal, R.1    Singh, N.R.2
  • 2
    • 33845619050 scopus 로고    scopus 로고
    • Comparison of pulp-mill-integrated hydrogen production from gasified black liquor with stand-alone production from gasified biomass
    • 10.1016/j.energy.2006.06.021 10.1016/j.energy.2006.06.021 1:CAS:528:DC%2BD2sXpslCq
    • Andersson E, Harvey S (2007) Comparison of pulp-mill-integrated hydrogen production from gasified black liquor with stand-alone production from gasified biomass. Energy 32(4):399-405. doi: 10.1016/j.energy.2006.06.021
    • (2007) Energy , vol.32 , Issue.4 , pp. 399-405
    • Andersson, E.1    Harvey, S.2
  • 3
    • 84870814479 scopus 로고    scopus 로고
    • AspenTech, v7.2. Burlington
    • AspenTech (2010) AspenOne Engineering v7.2. Burlington
    • (2010) AspenOne Engineering
  • 5
    • 70049112290 scopus 로고    scopus 로고
    • Maximum fossil fuel feedstock replacement potential of petrochemicals via biorefineries
    • 10.1016/j.cherd.2009.07.010 10.1016/j.cherd.2009.07.010 1:CAS:528:DC%2BD1MXht1GjtrrK
    • Brehmer B, Boom RM, Sanders J (2009) Maximum fossil fuel feedstock replacement potential of petrochemicals via biorefineries. Chem Eng Res Des 87(9):1103-1119. doi: 10.1016/j.cherd.2009.07.010
    • (2009) Chem Eng Res des , vol.87 , Issue.9 , pp. 1103-1119
    • Brehmer, B.1    Boom, R.M.2    Sanders, J.3
  • 6
    • 0036558114 scopus 로고    scopus 로고
    • A unified correlation for estimating HHV of solid, liquid and gaseous fuels
    • 10.1016/s0016-2361(01)00131-4 10.1016/S0016-2361(01)00131-4 1:CAS:528:DC%2BD38XitVOrtLw%3D
    • Channiwala SA, Parikh PP (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81(8):1051-1063. doi: 10.1016/s0016-2361(01)00131-4
    • (2002) Fuel , vol.81 , Issue.8 , pp. 1051-1063
    • Channiwala, S.A.1    Parikh, P.P.2
  • 7
    • 84864047593 scopus 로고    scopus 로고
    • CONCAWE, Brussels, Belgium. Accessed 14 Jan 2013
    • CONCAWE (2012) EU refinery energy systems and efficiency. CONCAWE, Brussels, Belgium. http://www.concawe.be/DocShareNoFrame/docs/1/ MHDCAHJBGHMPOJLPDKBPIHOOVEVCWY9DA3PDWY9DW1PD/CEnet/docs/DLS/Rpt-12-03-2012- 01520-01-E.pdf. Accessed 14 Jan 2013
    • (2012) EU Refinery Energy Systems and Efficiency
  • 8
    • 84862215482 scopus 로고    scopus 로고
    • Carbon and nitrogen trade-offs in biomass energy production
    • 10.1007/s10098-012-0468-3 10.1007/s10098-012-0468-3
    • Čuček L, Klemeš J, Kravanja Z (2012) Carbon and nitrogen trade-offs in biomass energy production. Clean Technol Environ Policy 14(3):389-397. doi: 10.1007/s10098-012-0468-3
    • (2012) Clean Technol Environ Policy , vol.14 , Issue.3 , pp. 389-397
    • Čuček, L.1    Klemeš, J.2    Kravanja, Z.3
  • 9
    • 84867399859 scopus 로고    scopus 로고
    • Sustainable hydrogen production options and the role of IAHE
    • 10.1016/j.ijhydene.2012.02.133 10.1016/j.ijhydene.2012.02.133 1:CAS:528:DC%2BC38XltFOhtLY%3D
    • Dincer I, Zamfirescu C (2012) Sustainable hydrogen production options and the role of IAHE. Int J Hydrogen Energy 37(21):16266-16286. doi: 10.1016/j.ijhydene.2012.02.133
    • (2012) Int J Hydrogen Energy , vol.37 , Issue.21 , pp. 16266-16286
    • Dincer, I.1    Zamfirescu, C.2
  • 11
    • 0037130599 scopus 로고    scopus 로고
    • Future prospects for production of methanol and hydrogen from biomass
    • 10.1016/s0378-7753(02)00220-3 10.1016/S0378-7753(02)00220-3 1:CAS:528:DC%2BD38XmslOjurs%3D
    • Hamelinck CN, Faaij APC (2002) Future prospects for production of methanol and hydrogen from biomass. J Power Sources 111(1):1-22. doi: 10.1016/s0378-7753(02)00220-3
    • (2002) J Power Sources , vol.111 , Issue.1 , pp. 1-22
    • Hamelinck, C.N.1    Faaij, A.P.C.2
  • 12
    • 84856625543 scopus 로고    scopus 로고
    • A parametric modelling study for pressurised steam/O2-blown fluidised-bed gasification of wood with catalytic reforming
    • 10.1016/j.biombioe.2011.02.045 10.1016/j.biombioe.2011.02.045 1:CAS:528:DC%2BC38Xit1Srt7k%3D
    • Hannula I, Kurkela E (2012) A parametric modelling study for pressurised steam/O2-blown fluidised-bed gasification of wood with catalytic reforming. Biomass Bioenergy 38:58-67. doi: 10.1016/j.biombioe.2011.02.045
    • (2012) Biomass Bioenergy , vol.38 , pp. 58-67
    • Hannula, I.1    Kurkela, E.2
  • 13
    • 84978021765 scopus 로고    scopus 로고
    • Simulation of biomass gasification in a dual fluidized bed gasifier
    • 10.1007/s13399-011-0030-2 10.1007/s13399-011-0030-2
    • He J, Göransson K, Söderlind U, Zhang W (2012) Simulation of biomass gasification in a dual fluidized bed gasifier. Biomass Conv Bioref 2(1):1-10. doi: 10.1007/s13399-011-0030-2
    • (2012) Biomass Conv Bioref , vol.2 , Issue.1 , pp. 1-10
    • He, J.1    Göransson, K.2    Söderlind, U.3    Zhang, W.4
  • 14
    • 0003035839 scopus 로고    scopus 로고
    • Stoichiometric water consumption of steam gasification by the FICFB-gasification process
    • A.V. Bridgwater (eds) 1 Blackwell Science Oxford
    • Hofbauer H, Rauch R (2000) Stoichiometric water consumption of steam gasification by the FICFB-gasification process. In: Bridgwater AV (ed) Progress in thermochemical biomass conversion, vol 1. Blackwell Science, Oxford
    • (2000) Progress in Thermochemical Biomass Conversion
    • Hofbauer, H.1    Rauch, R.2
  • 15
    • 23844508160 scopus 로고    scopus 로고
    • Evaluation of energy efficiency in biofuel drying by means of energy and exergy analyses
    • 10.1016/j.applthermaleng.2005.04.005 10.1016/j.applthermaleng.2005.04.005 1:CAS:528:DC%2BD2MXos1aksbY%3D
    • Holmberg H, Ahtila P (2005) Evaluation of energy efficiency in biofuel drying by means of energy and exergy analyses. Appl Therm Eng 25(17-18):3115-3128. doi: 10.1016/j.applthermaleng.2005.04.005
    • (2005) Appl Therm Eng , vol.25 , Issue.17-18 , pp. 3115-3128
    • Holmberg, H.1    Ahtila, P.2
  • 16
    • 84856527302 scopus 로고    scopus 로고
    • Hydrogen production from biomass gasification in the oil refining industry - A system analysis
    • 10.1016/j.energy.2011.12.011 10.1016/j.energy.2011.12.011 1:CAS:528:DC%2BC38XitFGjsbo%3D
    • Johansson D, Franck PT, Berntsson T (2012) Hydrogen production from biomass gasification in the oil refining industry - a system analysis. Energy 38(1):212-227. doi: 10.1016/j.energy.2011.12.011
    • (2012) Energy , vol.38 , Issue.1 , pp. 212-227
    • Johansson, D.1    Franck, P.T.2    Berntsson, T.3
  • 17
    • 60649119558 scopus 로고    scopus 로고
    • Goodbye to carbon neutral: Getting biomass footprints right
    • 10.1016/j.eiar.2008.11.002 10.1016/j.eiar.2008.11.002
    • Johnson E (2009) Goodbye to carbon neutral: getting biomass footprints right. Environ Impact Assess Rev 29(3):165-168. doi: 10.1016/j.eiar.2008.11.002
    • (2009) Environ Impact Assess Rev , vol.29 , Issue.3 , pp. 165-168
    • Johnson, E.1
  • 18
    • 84867402539 scopus 로고    scopus 로고
    • Exergoeconomic analysis of hydrogen production from biomass gasification
    • 10.1016/j.ijhydene.2012.02.173 10.1016/j.ijhydene.2012.02.173 1:CAS:528:DC%2BC38XkvVWisbg%3D
    • Kalinci Y, Hepbasli A, Dincer I (2012) Exergoeconomic analysis of hydrogen production from biomass gasification. Int J Hydrogen Energy 37(21):16402-16411. doi: 10.1016/j.ijhydene.2012.02.173
    • (2012) Int J Hydrogen Energy , vol.37 , Issue.21 , pp. 16402-16411
    • Kalinci, Y.1    Hepbasli, A.2    Dincer, I.3
  • 20
    • 0029723037 scopus 로고    scopus 로고
    • Targeting the minimum cost of energy requirements: A new graphical technique for evaluating the integration of utility systems
    • 10.1016/0098-1354(96)00048-8 1:CAS:528:DyaK28XjsF2jsbg%3D
    • Marechal F, Kalitventzeff B (1996) Targeting the minimum cost of energy requirements: a new graphical technique for evaluating the integration of utility systems. Comput Chem Eng 20((SUPPL.1)):S225-S230
    • (1996) Comput Chem Eng , vol.20 , Issue.SUPPL. 1
    • Marechal, F.1    Kalitventzeff, B.2
  • 23
    • 76449093960 scopus 로고    scopus 로고
    • Biohydrogen production from forest and agricultural residues for upgrading of bitumen from oil sands
    • 10.1016/j.energy.2009.10.029 10.1016/j.energy.2009.10.029 1:CAS:528:DC%2BC3cXhtlymtLk%3D
    • Sarkar S, Kumar A (2010) Biohydrogen production from forest and agricultural residues for upgrading of bitumen from oil sands. Energy 35(2):582-591. doi: 10.1016/j.energy.2009.10.029
    • (2010) Energy , vol.35 , Issue.2 , pp. 582-591
    • Sarkar, S.1    Kumar, A.2
  • 26
    • 84865421330 scopus 로고    scopus 로고
    • Co-production of hydrogen and electricity from lignocellulosic biomass: Process design and thermo-economic optimization
    • 10.1016/j.energy.2012.01.056 10.1016/j.energy.2012.01.056 1:CAS:528:DC%2BC38Xht1Gls7bO
    • Tock L, Maréchal F (2012) Co-production of hydrogen and electricity from lignocellulosic biomass: process design and thermo-economic optimization. Energy 45(1):339-349. doi: 10.1016/j.energy.2012.01.056
    • (2012) Energy , vol.45 , Issue.1 , pp. 339-349
    • Tock, L.1    Maréchal, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.