메뉴 건너뛰기




Volumn 12, Issue 1, 2013, Pages 44-64

Quality-based guidance for exploratory dimensionality reduction

Author keywords

Dimensionality reduction; High dimensional data; Interactive visual analysis; Quality metrics; Visual exploration

Indexed keywords

DIMENSIONALITY REDUCTION; HIGH DIMENSIONAL DATA; INTERACTIVE VISUAL ANALYSIS; QUALITY METRICS; VISUAL EXPLORATION;

EID: 84879375284     PISSN: 14738716     EISSN: 14738724     Source Type: Journal    
DOI: 10.1177/1473871612460526     Document Type: Article
Times cited : (29)

References (49)
  • 1
    • 28444464348 scopus 로고
    • The plane with parallel coordinates
    • Inselberg A. The plane with parallel coordinates. Visual Comput 1985; 1: 69-91.
    • (1985) Visual Comput , vol.1 , pp. 69-91
    • Inselberg, A.1
  • 2
    • 84950434348 scopus 로고
    • Hyperdimensional data analysis using parallel coordinates
    • Wegman EJ. Hyperdimensional data analysis using parallel coordinates. J Am Stat Assoc 1990; 85: 664-675.
    • (1990) J Am Stat Assoc , vol.85 , pp. 664-675
    • Wegman, E.J.1
  • 4
    • 77957922288 scopus 로고    scopus 로고
    • Interactive dimensionality reduction through user-defined combinations of quality metrics
    • Johansson S and Johansson J. Interactive dimensionality reduction through user-defined combinations of quality metrics. IEEE T Vis Comput Gr 2009; 15: 993-1000.
    • (2009) IEEE T Vis Comput Gr , vol.15 , pp. 993-1000
    • Johansson, S.1    Johansson, J.2
  • 5
    • 16244379742 scopus 로고    scopus 로고
    • Coordinating computational and visual approaches for interactive feature selection and multivariate clustering
    • Guo D. Coordinating computational and visual approaches for interactive feature selection and multivariate clustering. Inform Visual 2003; 2: 232-246.
    • (2003) Inform Visual , vol.2 , pp. 232-246
    • Guo, D.1
  • 9
    • 22944469395 scopus 로고    scopus 로고
    • Top 10 unsolved information visualization problems
    • Chen C. Top 10 unsolved information visualization problems. IEEE Comput Graph 2005; 25: 12-16.
    • (2005) IEEE Comput Graph , vol.25 , pp. 12-16
    • Chen, C.1
  • 10
    • 0028013807 scopus 로고
    • The table lens: Merging graphical and symbolic representations in an interactive focus + context visualization for tabular information
    • (eds B Adelson, S Dumais and J Olson), Boston, MA: ACM, 24-28 April
    • Rao R and Card SK. The table lens: merging graphical and symbolic representations in an interactive focus + context visualization for tabular information. In: Proceedings of the SIGCHI conference on human factors in computing systems: celebrating interdependence (eds B Adelson, S Dumais and J Olson), Boston, MA: ACM, 24-28 April 1994, pp. 318-322.
    • (1994) Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: Celebrating Interdependence , pp. 318-322
    • Rao, R.1    Card, S.K.2
  • 12
    • 0033897901 scopus 로고    scopus 로고
    • Designing pixel-oriented visualization techniques: Theory and applications
    • Keim DA. Designing pixel-oriented visualization techniques: theory and applications. IEEE T Vis Comput Gr 2000; 6: 59-78.
    • (2000) IEEE T Vis Comput Gr , vol.6 , pp. 59-78
    • Keim, D.A.1
  • 13
    • 16244391807 scopus 로고    scopus 로고
    • Value and relation display for interactive exploration of high dimensional datasets
    • (eds M Ward and T Munzner), Austin, TX, 10-12 October
    • Yang J, Patro A, Huang S, et al. Value and relation display for interactive exploration of high dimensional datasets. In: Proceedings of the 10th IEEE symposium on information visualization (eds M Ward and T Munzner), Austin, TX, 10-12 October 2004, pp. 73-80.
    • (2004) Proceedings of the 10th IEEE Symposium on Information Visualization , pp. 73-80
    • Yang, J.1    Patro, A.2    Huang, S.3
  • 14
    • 80955143380 scopus 로고    scopus 로고
    • Brushing dimensions - A dual visual analysis model for high-dimensional data
    • Turkay C, Filzmoser P and Hauser H. Brushing dimensions - a dual visual analysis model for high-dimensional data. IEEE T Vis Comput Gr 2011; 17: 2591-2599.
    • (2011) IEEE T Vis Comput Gr , vol.17 , pp. 2591-2599
    • Turkay, C.1    Filzmoser, P.2    Hauser, H.3
  • 15
    • 70350216003 scopus 로고    scopus 로고
    • Multivariate visual explanation for high dimensional datasets
    • (eds D Ebert and T Ertl), Columbus, OH: IEEE Computer Society, 21-23 October
    • Barlowe S, Zhang T, Liu Y, et al. Multivariate visual explanation for high dimensional datasets. In: Proceedings of IEEE symposium on visual analytics science and technology (eds D Ebert and T Ertl), Columbus, OH: IEEE Computer Society, 21-23 October 2008, pp. 147-154.
    • (2008) Proceedings of IEEE Symposium on Visual Analytics Science and Technology , pp. 147-154
    • Barlowe, S.1    Zhang, T.2    Liu, Y.3
  • 16
    • 41549149938 scopus 로고    scopus 로고
    • ClusterSculptor: A visual analytics tool for high-dimensional data
    • (edsWRibarsky and J Dill), Sacramento, CA: IEEE Computer Society, 30 October-1 November
    • Nam EJ, Han Y,Mueller K, et al. ClusterSculptor: a visual analytics tool for high-dimensional data. In: Proceedings of IEEE symposium on visual analytics science and technology (edsWRibarsky and J Dill), Sacramento, CA: IEEE Computer Society, 30 October-1 November 2007, pp. 75-82.
    • (2007) Proceedings of IEEE Symposium on Visual Analytics Science and Technology , pp. 75-82
    • Nam, E.J.1    Han, Y.2    Mueller, K.3
  • 17
    • 0345404396 scopus 로고    scopus 로고
    • The self-organizing map
    • Kohonen T. The self-organizing map. Neurocomputing 1998; 21: 1-6.
    • (1998) Neurocomputing , vol.21 , pp. 1-6
    • Kohonen, T.1
  • 18
    • 0016102310 scopus 로고
    • A projection pursuit algorithm for exploratory data analysis
    • Friedman JH and Tukey JW. A projection pursuit algorithm for exploratory data analysis. IEEE T Comput 1974; 23: 881-890.
    • (1974) IEEE T Comput , vol.23 , pp. 881-890
    • Friedman, J.H.1    Tukey, J.W.2
  • 19
    • 3042541904 scopus 로고    scopus 로고
    • Robust linear dimensionality reduction
    • Koren Y and Carmel L. Robust linear dimensionality reduction. IEEE T Vis Comput Gr 2004; 10: 459-470.
    • (2004) IEEE T Vis Comput Gr , vol.10 , pp. 459-470
    • Koren, Y.1    Carmel, L.2
  • 21
    • 0035788895 scopus 로고    scopus 로고
    • Visualizing multi-dimensional clusters, trends, and outliers using star coordinates
    • (eds D Lee, M Schkolnick, M Provost, et al.), San Francisco, CA: ACM, 26-29 August
    • Kandogan E. Visualizing multi-dimensional clusters, trends, and outliers using star coordinates. In: Proceedings of the 7th ACM SIGKDD international conference on knowledge discovery and data mining (eds D Lee, M Schkolnick, M Provost, et al.), San Francisco, CA: ACM, 26-29 August 2001, pp. 107-116.
    • (2001) Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , pp. 107-116
    • Kandogan, E.1
  • 22
    • 0000835612 scopus 로고
    • The grand tour: A tool for viewing multidimensional data
    • Asimov D. The grand tour: a tool for viewing multidimensional data. SIAM J Sci Stat Comp 1985; 6: 128-143.
    • (1985) SIAM J Sci Stat Comp , vol.6 , pp. 128-143
    • Asimov, D.1
  • 23
    • 16244412939 scopus 로고    scopus 로고
    • Steerable, progressive multidimensional scaling
    • (eds M Ward and T Munzner), Austin, TX: IEEE Computer Society, 10- 12 October
    • Williams M and Munzner T. Steerable, progressive multidimensional scaling. In: Proceedings of the 10th IEEE symposium on information visualization (eds M Ward and T Munzner), Austin, TX: IEEE Computer Society, 10- 12 October 2004, pp. 57-64.
    • (2004) Proceedings of the 10th IEEE Symposium on Information Visualization , pp. 57-64
    • Williams, M.1    Munzner, T.2
  • 24
    • 46849108902 scopus 로고    scopus 로고
    • Dimensionality reduction and visualization in principal component analysis
    • Ivosev G, Burton L and Bonner R. Dimensionality reduction and visualization in principal component analysis. Anal Chem 2008; 80: 4933-4944.
    • (2008) Anal Chem , vol.80 , pp. 4933-4944
    • Ivosev, G.1    Burton, L.2    Bonner, R.3
  • 25
    • 68549083629 scopus 로고    scopus 로고
    • IPCA: An interactive system for PCA-based visual analytics
    • Jeong DH, Ziemkiewicz C, Fisher B, et al. iPCA: an interactive system for PCA-based visual analytics. Comput Graph Forum 2009; 28: 767-774.
    • (2009) Comput Graph Forum , vol.28 , pp. 767-774
    • Jeong, D.H.1    Ziemkiewicz, C.2    Fisher, B.3
  • 26
    • 16244396435 scopus 로고    scopus 로고
    • A rank-by-feature framework for unsupervised multidimensional data exploration using low dimensional projections
    • (eds M Ward and T Munzner), Austin, TX: IEEE Computer Society, 10-12 October
    • Seo J and Shneiderman B. A rank-by-feature framework for unsupervised multidimensional data exploration using low dimensional projections. In: Proceedings of the 10th IEEE symposium on information visualization (eds M Ward and T Munzner), Austin, TX: IEEE Computer Society, 10-12 October 2004, pp. 65-72.
    • (2004) Proceedings of the 10th IEEE Symposium on Information Visualization , pp. 65-72
    • Seo, J.1    Shneiderman, B.2
  • 27
    • 45149112330 scopus 로고    scopus 로고
    • Enhanced high dimensional data visualization through dimension reduction and attribute arrangement
    • (eds E Banissi, RA Burkhard, A Ursyn, et al.), London, UK: IEEE Computer Society, 5-7 July
    • Artero AO, De Olivera MCF and Levkowitz H. Enhanced high dimensional data visualization through dimension reduction and attribute arrangement. In: Proceedings of the 10th international conference on information visualization (eds E Banissi, RA Burkhard, A Ursyn, et al.), London, UK: IEEE Computer Society, 5-7 July 2006, pp. 707-712.
    • (2006) Proceedings of the 10th international conference on information visualization , pp. 707-712
    • Artero, A.O.1    De Olivera, M.C.F.2    Levkowitz, H.3
  • 28
    • 68549110238 scopus 로고    scopus 로고
    • Selecting good views of high-dimensional data using class consistency
    • Sips M, Neubert B, Lewis JP, et al. Selecting good views of high-dimensional data using class consistency. Comput Graph Forum (Proc EuroVis 2009) 2009; 28: 831-838.
    • (2009) Comput Graph Forum (Proc EuroVis 2009) , vol.28 , pp. 831-838
    • Sips, M.1    Neubert, B.2    Lewis, J.P.3
  • 29
    • 79952902092 scopus 로고    scopus 로고
    • Automated analytical methods to support visual exploration of highdimensional data
    • Tatu A, Albuquerque G, Eisemann M, et al. Automated analytical methods to support visual exploration of highdimensional data. IEEE T Vis Comput Gr 2011; 17: 584-597.
    • (2011) IEEE T Vis Comput Gr , vol.17 , pp. 584-597
    • Tatu, A.1    Albuquerque, G.2    Eisemann, M.3
  • 30
    • 78650957406 scopus 로고    scopus 로고
    • Improving the visual analysis of high-dimensional datasets using quality measures
    • (eds A MacEachren and S Miksch), Salt Lake City, UT: IEEE Computer Society, 25-26 October
    • Albuquerque G, Eisemann M, Lehmann DJ, et al. Improving the visual analysis of high-dimensional datasets using quality measures. In: Proceedings of IEEE symposium on visual analytics science and technology (eds A MacEachren and S Miksch), Salt Lake City, UT: IEEE Computer Society, 25-26 October 2010, pp. 19-26.
    • (2010) Proceedings of IEEE Symposium on Visual Analytics Science and Technology , pp. 19-26
    • Albuquerque, G.1    Eisemann, M.2    Lehmann, D.J.3
  • 31
    • 84860671630 scopus 로고    scopus 로고
    • Visualizing highdimensional structures by dimension ordering and filtering using subspace analysis
    • Ferdosi BJ and Roerdink JB. Visualizing highdimensional structures by dimension ordering and filtering using subspace analysis. Comput Gr Forum 2011; 30: 1121-1130.
    • (2011) Comput Gr Forum , vol.30 , pp. 1121-1130
    • Ferdosi, B.J.1    Roerdink, J.B.2
  • 32
    • 2542441481 scopus 로고    scopus 로고
    • Visual hierarchical dimension reduction for exploration of high dimensional datasets
    • (eds GP Bonneau, S Hahmann and CD Hansen), Grenoble, France: Eurographics Association, 26-28 May
    • Yang J, Ward MO and Huang S. Visual hierarchical dimension reduction for exploration of high dimensional datasets. In: Proceedings of Eurographics/IEEE TCVG symposium on visualization (eds GP Bonneau, S Hahmann and CD Hansen), Grenoble, France: Eurographics Association, 26-28 May 2003, pp. 19-28.
    • (2003) Proceedings of Eurographics/IEEE TCVG Symposium on Visualization , pp. 19-28
    • Yang, J.1    Ward, M.O.2    Huang, S.3
  • 33
    • 54949121720 scopus 로고    scopus 로고
    • Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets
    • (eds T Munzner and S North), Seattle, WA: IEEE Computer Society, 19-21 October
    • Yang J, Peng W, Ward MO, et al. Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets. In: Proceedings of IEEE Symposium on Information Visualization (eds T Munzner and S North), Seattle, WA: IEEE Computer Society, 19-21 October 2003, pp. 105-112.
    • (2003) Proceedings of IEEE Symposium on Information Visualization , pp. 105-112
    • Yang, J.1    Peng, W.2    Ward, M.O.3
  • 35
    • 78650944088 scopus 로고    scopus 로고
    • DimStiller: Workflows for dimensional analysis and reduction
    • (eds A MacEachren and S Miksch), Salt Lake City, UT: IEEE Computer Society, 25-26 October
    • Ingram S, Munzner T, Irvine V, et al. DimStiller: workflows for dimensional analysis and reduction. In: Proceedings of IEEE symposium on visual analytics science and technology (eds A MacEachren and S Miksch), Salt Lake City, UT: IEEE Computer Society, 25-26 October 2010, pp. 3-10.
    • (2010) Proceedings of IEEE Symposium on Visual Analytics Science and Technology , pp. 3-10
    • Ingram, S.1    Munzner, T.2    Irvine, V.3
  • 36
    • 0000852513 scopus 로고
    • Multiobjective optimization using nondominated sorting in genetic algorithms
    • Srinivas N and Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 1994; 2: 221-248.
    • (1994) Evol Comput , vol.2 , pp. 221-248
    • Srinivas, N.1    Deb, K.2
  • 37
    • 0001953837 scopus 로고
    • Genetic algorithms for multiobjective optimization: Formulation, discussion and generalisation
    • (ed. S Forrest), Urbana- Champaign, IL: Morgan Kaufmann Publishers Inc., 17- 21 July
    • Fonseca CM and Fleming PJ. Genetic algorithms for multiobjective optimization: formulation, discussion and generalisation. In: Proceedings of the 5th international conference on genetic algorithms (ed. S Forrest), Urbana- Champaign, IL: Morgan Kaufmann Publishers Inc., 17- 21 July 1993, pp. 416-423.
    • (1993) Proceedings of the 5th International Conference on Genetic Algorithms , pp. 416-423
    • Fonseca, C.M.1    Fleming, P.J.2
  • 41
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • (eds A Tiwary and M Franklin), Seattle, WA: ACM, 1-4 June
    • Agrawal R, Gehrke J, Gunopulos D, et al. Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of ACM SIGMOD international conference on management of data (eds A Tiwary and M Franklin), Seattle, WA: ACM, 1-4 June 1998, pp. 94-105.
    • (1998) Proceedings of ACM SIGMOD International Conference on Management of Data , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3
  • 42
    • 0001882616 scopus 로고
    • Fast algorithms for mining association rules
    • (eds JB Bocca, M Jarke and C Zaniolo), Santiago de Chile, Chile: Morgan Kaufmann Publishers Inc., 12-15 September
    • Agrawal R and Srikant R. Fast algorithms for mining association rules. In: Proceedings of the 20th international conference on very large data bases (eds JB Bocca, M Jarke and C Zaniolo), Santiago de Chile, Chile: Morgan Kaufmann Publishers Inc., 12-15 September 1994, pp. 487-499.
    • (1994) Proceedings of the 20th International Conference on Very Large Data Bases , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 43
    • 84952503562 scopus 로고
    • Thirteen ways to look at the correlation coefficient
    • Rodgers JL and Nicewander WA. Thirteen ways to look at the correlation coefficient. Am Stat 1988; 42: 59-66.
    • (1988) Am Stat , vol.42 , pp. 59-66
    • Rodgers, J.L.1    Nicewander, W.A.2
  • 48
    • 0242490780 scopus 로고    scopus 로고
    • Cytoscape: A software environment for integrated models of biomolecular interaction networks
    • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13: 2498-2504.
    • (2003) Genome Res , vol.13 , pp. 2498-2504
    • Shannon, P.1    Markiel, A.2    Ozier, O.3
  • 49
    • 77952243141 scopus 로고    scopus 로고
    • QIIME allows analysis of high-throughput community sequencing data
    • Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010; 7: 335-336.
    • (2010) Nat Methods , vol.7 , pp. 335-336
    • Caporaso, J.G.1    Kuczynski, J.2    Stombaugh, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.