메뉴 건너뛰기




Volumn 2518 LNCS, Issue , 2002, Pages 175-186

An asymptotic fully polynomial time approximation scheme for bin covering

Author keywords

[No Author keywords available]

Indexed keywords

BIN COVERINGS; BIN PACKING PROBLEM; DUAL PROBLEM; FULLY POLYNOMIAL TIME APPROXIMATION SCHEMES;

EID: 84878661623     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-36136-7_16     Document Type: Conference Paper
Times cited : (1)

References (14)
  • 5
    • 0013361630 scopus 로고
    • On-line algorithms for a dual version of bin packing
    • J. Csirik and V. Totik, On-line algorithms for a dual version of bin packing, Discrete Applied Mathematics, 21 (1988), 163-167.
    • (1988) Discrete Applied Mathematics , vol.21 , pp. 163-167
    • Csirik, J.1    Totik, V.2
  • 6
    • 51249181640 scopus 로고
    • Bin packing can be solved within 1 + e in linear time
    • W.F. de la Vega and C.S. Lueker, Bin packing can be solved within 1 + e in linear time, Combinatorica, 1 (1981), 349-355.
    • (1981) Combinatorica , vol.1 , pp. 349-355
    • De La Vega, W.F.1    Lueker, C.S.2
  • 7
    • 0001950708 scopus 로고
    • Fast approximation schemes for convex programs with many blocks and coupling constraints
    • M.D. Grigoriadis and L.G. Khachiyan, Fast approximation schemes for convex programs with many blocks and coupling constraints, SIAM Journal on Optimization, 4(1994), 86-107.
    • (1994) SIAM Journal on Optimization , vol.4 , pp. 86-107
    • Grigoriadis, M.D.1    Khachiyan, L.G.2
  • 8
    • 0030134272 scopus 로고    scopus 로고
    • Coordination complexity of parallel price-directive decomposition
    • M.D. Grigoriadis and L.G. Khachiyan, Coordination complexity of parallel price-directive decomposition, Mathematics of Operations Research, 21 (1996), pp. 321-340. (Pubitemid 126600323)
    • (1996) Mathematics of Operations Research , vol.21 , Issue.2 , pp. 321-340
    • Grigoriadis, M.D.1    Khachiyan, L.G.2
  • 9
    • 0016560084 scopus 로고
    • Fast approximation algorithms for the knapsack and sum of subset problem
    • O.H. Ibarra and C.E. Kim, Fast approximation algorithms for the knapsack and sum of subset problem, Journal of the ACM, 22 (1975), 463-468.
    • (1975) Journal of the ACM , vol.22 , pp. 463-468
    • Ibarra, O.H.1    Kim, C.E.2
  • 12
    • 84958974567 scopus 로고    scopus 로고
    • A new fully polynomal approximation scheme for the knapsack problem
    • Approximation Algorithms for Combinatorial Optimization
    • H. Kellerer and U. Pferschy, A new fully polynomial approximation scheme for the knapsack problem, Proceedings 1st International Workshop on Approximation Algorithms for Combinatorial Optimization (1998), 123-134. (Pubitemid 128104535)
    • (1998) Lecture Notes in Computer Science , Issue.1444 , pp. 123-134
    • Kellerer, H.1    Pferschy, U.2
  • 13
    • 0001099866 scopus 로고
    • Fast approximation algorithms for knapsack problems
    • E. Lawler, Fast approximation algorithms for knapsack problems, Mathematics of Operations Research, 4(1979), 339-356.
    • (1979) Mathematics of Operations Research , vol.4 , pp. 339-356
    • Lawler, E.1
  • 14
    • 0000126694 scopus 로고
    • Fast approximation algorithms for fractional packing and covering problems
    • S.A. Plotkin, D.B. Shmoys, and E. Tardos, Fast approximation algorithms for fractional packing and covering problems, Mathematics of Operations Research, 20 (1995), 257-301.
    • (1995) Mathematics of Operations Research , vol.20 , pp. 257-301
    • Plotkin, S.A.1    Shmoys, D.B.2    Tardos, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.