메뉴 건너뛰기




Volumn 116, Issue , 2013, Pages 62-75

Three-dimensional virtual colonoscopy for automatic polyps detection by artificial neural network approach: New tests on an enlarged cohort of polyps

Author keywords

Colonic polyps detection; Computer aided diagnosis system; Image processing and segmentation; Supervised artificial neural network; Three dimensional virtual colonoscopy

Indexed keywords

ARTIFICIAL NEURAL NETWORK APPROACH; CHARACTERISTIC ANALYSIS; COLONIC POLYPS DETECTIONS; COMPUTED TOMOGRAPHY COLONOGRAPHY; COMPUTER AIDED DIAGNOSIS(CAD); COMPUTER-AIDED DIAGNOSIS SYSTEM; SUPERVISED ARTIFICIAL NEURAL NETWORKS; VIRTUAL COLONOSCOPY;

EID: 84878521814     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.03.026     Document Type: Article
Times cited : (27)

References (25)
  • 1
    • 84855695274 scopus 로고    scopus 로고
    • Three-dimensional virtual Colonoscopy for Polyps Detection by Supervised Artificial Neural Networks
    • D.-S. Huang et al. (Eds.): ICIC 2011, LNBI 6840, 2011. Springer-Verlag, Berlin Heidelberg
    • V. Bevilacqua, D. De Fano, S. Giannini, G. Mastronardi, V. Paradiso, M. Pennini, M. Piccinni, G. Angelelli, and M. Moschetta Three-dimensional virtual Colonoscopy for Polyps Detection by Supervised Artificial Neural Networks D.-S. Huang et al. (Eds.): ICIC 2011, LNBI 6840, pp. 596-603, 2011. Springer-Verlag, Berlin Heidelberg 2011.
    • (2011) , pp. 596-603
    • Bevilacqua, V.1    De Fano, D.2    Giannini, S.3    Mastronardi, G.4    Paradiso, V.5    Pennini, M.6    Piccinni, M.7    Angelelli, G.8    Moschetta, M.9
  • 2
    • 67649226043 scopus 로고    scopus 로고
    • Diagnostic accuracy of computed tomographic colonography for the detection of advanced neoplasia in individuals at increased risk of colorectal cancer
    • June 17
    • Regge D., et al. Diagnostic accuracy of computed tomographic colonography for the detection of advanced neoplasia in individuals at increased risk of colorectal cancer. J. Am. Med. Assoc. 2009, 301(23). June 17.
    • (2009) J. Am. Med. Assoc. , vol.301 , Issue.23
    • Regge, D.1
  • 3
    • 0032712063 scopus 로고    scopus 로고
    • Linear and nonlinear feedforward neural network classifiers: a comprehensive understanding
    • Huang D.S., Ma S.D. Linear and nonlinear feedforward neural network classifiers: a comprehensive understanding. J. Intell. Syst. 1999, 9(1):1-38.
    • (1999) J. Intell. Syst. , vol.9 , Issue.1 , pp. 1-38
    • Huang, D.S.1    Ma, S.D.2
  • 4
    • 27144494317 scopus 로고    scopus 로고
    • The bottleneck behaviour in linear feedforward neural network classifiers and their breakthrough
    • Huang D.S. The bottleneck behaviour in linear feedforward neural network classifiers and their breakthrough. J. Comput. Sci. Technol. 1999, 14(1):34-43.
    • (1999) J. Comput. Sci. Technol. , vol.14 , Issue.1 , pp. 34-43
    • Huang, D.S.1
  • 5
    • 84878488257 scopus 로고    scopus 로고
    • Epidemiologia (Diffusione del tumore del colon e del retto), , (accessed: 3 January ).
    • F..Gabrielli, Epidemiologia (Diffusione del tumore del colon e del retto), , (accessed: 3 January 2007). http://www.francescogabrielli.com/pages/informazione_tumori_colon.htm.
    • (2007)
    • Gabrielli, F.1
  • 6
    • 84878488435 scopus 로고    scopus 로고
    • (accessed: 15 September).
    • (accessed: 15 September 2008). http://www.cancersurvivalrates.net/colon-cancer-survival-rates.html.
    • (2008)
  • 7
    • 27744470873 scopus 로고    scopus 로고
    • CT colonography: where have we been and where are we going?
    • Macari M., Bini E.J. CT colonography: where have we been and where are we going?. Radiology 2005, 237(3):819-833.
    • (2005) Radiology , vol.237 , Issue.3 , pp. 819-833
    • Macari, M.1    Bini, E.J.2
  • 8
    • 12844281041 scopus 로고    scopus 로고
    • CAD techniques, challenges, and controversies in computed tomographic colonography
    • Yoshida H., Dachman A.H. CAD techniques, challenges, and controversies in computed tomographic colonography. Abdom. Imaging 2005, 30(1):26-41.
    • (2005) Abdom. Imaging , vol.30 , Issue.1 , pp. 26-41
    • Yoshida, H.1    Dachman, A.H.2
  • 9
    • 33645002613 scopus 로고    scopus 로고
    • Reduction of false positives by internal features for polyp detection in CT-based virtual colonoscopy
    • Wang Z., Liang Z., Li L., Li X., Li B., Anderson J., et al. Reduction of false positives by internal features for polyp detection in CT-based virtual colonoscopy. Med. Phys. 2005, 32(12):3602-3616.
    • (2005) Med. Phys. , vol.32 , Issue.12 , pp. 3602-3616
    • Wang, Z.1    Liang, Z.2    Li, L.3    Li, X.4    Li, B.5    Anderson, J.6
  • 10
  • 11
    • 33749376894 scopus 로고    scopus 로고
    • An improved 2D colonic polyp segmentation framework based on gradient vector flow deformable model
    • Springer, Heidelberg
    • Chen D., Hassouna M.S., Farag A.A., Falk R. An improved 2D colonic polyp segmentation framework based on gradient vector flow deformable model. MIAR 2006. LNCS 2006, 4091:372-379. Springer, Heidelberg.
    • (2006) MIAR 2006. LNCS , vol.4091 , pp. 372-379
    • Chen, D.1    Hassouna, M.S.2    Farag, A.A.3    Falk, R.4
  • 12
    • 70350432599 scopus 로고    scopus 로고
    • Image Processing Framework for Virtual Colonoscopy
    • D.-S. Huang et al. (Eds.): ICIC 2009, LNCS 5754
    • Vitoantonio Bevilacqua, Marco Cortellino, Michele Piccinni, Antonio Scarpa, Diego Taurino, Giuseppe Mastronardi, Marco Moschetta, Giuseppe Angelelli, Image Processing Framework for Virtual Colonoscopy, D.-S. Huang et al. (Eds.): ICIC 2009, LNCS 5754, pp. 965-974, 2009.
    • (2009) , pp. 965-974
    • Bevilacqua, V.1    Cortellino, M.2    Piccinni, M.3    Scarpa, A.4    Taurino, D.5    Mastronardi, G.6    Moschetta, M.7    Angelelli, G.8
  • 13
    • 36649028681 scopus 로고    scopus 로고
    • A CAD system for nodule detection in low-dose lung CTs based on region growing and a new active contour model
    • Bellotti R., et al. A CAD system for nodule detection in low-dose lung CTs based on region growing and a new active contour model. Med. Phys. 2007, 34(12):4901-4910.
    • (2007) Med. Phys. , vol.34 , Issue.12 , pp. 4901-4910
    • Bellotti, R.1
  • 16
    • 0000759063 scopus 로고    scopus 로고
    • Radial basis probabilistic neural networks: Model and application
    • Huang D.S. Radial basis probabilistic neural networks: Model and application. Int. J. Pattern Recognit Artif Intell. 1999, 13(7):1083-1101.
    • (1999) Int. J. Pattern Recognit Artif Intell. , vol.13 , Issue.7 , pp. 1083-1101
    • Huang, D.S.1
  • 18
    • 33749391616 scopus 로고    scopus 로고
    • Massive-training artificial neural network (MTANN) for reduction of false-positives in computer-aided detection of polyps: suppression of rectal tubes
    • Suzuki K., Yoshida H., Näppi J., Dachman A.H. Massive-training artificial neural network (MTANN) for reduction of false-positives in computer-aided detection of polyps: suppression of rectal tubes. Med. Phys. 2006, 33(10):3814-3824.
    • (2006) Med. Phys. , vol.33 , Issue.10 , pp. 3814-3824
    • Suzuki, K.1    Yoshida, H.2    Näppi, J.3    Dachman, A.H.4
  • 19
    • 0035251045 scopus 로고    scopus 로고
    • A simple neural network pruning algorithm with application to filter synthesis
    • Suzuki K., Horiba I., Sugie N. A simple neural network pruning algorithm with application to filter synthesis. Neural Process. Lett. 2001, 13(1):43-53.
    • (2001) Neural Process. Lett. , vol.13 , Issue.1 , pp. 43-53
    • Suzuki, K.1    Horiba, I.2    Sugie, N.3
  • 20
    • 13944267171 scopus 로고    scopus 로고
    • False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network
    • Suzuki K., Shiraishi J., Abe H., MacMahon H., Doi K. False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network. Acad. Radiol. 2005, 12(2):191-201.
    • (2005) Acad. Radiol. , vol.12 , Issue.2 , pp. 191-201
    • Suzuki, K.1    Shiraishi, J.2    Abe, H.3    MacMahon, H.4    Doi, K.5
  • 21
    • 0038710369 scopus 로고    scopus 로고
    • Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography
    • Suzuki K., Armato S.G., Li F., Sone S., Doi K. Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography. Med. Phys. 2003, 30(7):1602-1617.
    • (2003) Med. Phys. , vol.30 , Issue.7 , pp. 1602-1617
    • Suzuki, K.1    Armato, S.G.2    Li, F.3    Sone, S.4    Doi, K.5
  • 23
    • 84878479017 scopus 로고    scopus 로고
    • Receiver Operating Characteristic analysis in medical imaging
    • Receiver Operating Characteristic analysis in medical imaging, Volume 8, J. ICRU, 2008.
    • (2008) J. ICRU , vol.8
  • 24
    • 0032099284 scopus 로고    scopus 로고
    • The local minima free condition of feedforward neural networks for outer-supervised learning
    • Huang D.S. The local minima free condition of feedforward neural networks for outer-supervised learning. IEEE Trans Syst., Man Cybern. 1998, 28B(3):477-480.
    • (1998) IEEE Trans Syst., Man Cybern. , vol.28 B , Issue.3 , pp. 477-480
    • Huang, D.S.1
  • 25
    • 57749092656 scopus 로고    scopus 로고
    • A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks,
    • Huang D.S., Du Ji-Xiang A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks,. IEEE Trans. Neural Networks 2008, 19(12):2099-2115.
    • (2008) IEEE Trans. Neural Networks , vol.19 , Issue.12 , pp. 2099-2115
    • Huang, D.S.1    Du, J.-X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.