메뉴 건너뛰기




Volumn 6, Issue 5, 2013, Pages 794-797

Organic rechargeable batteries with tailored voltage and cycle performance

Author keywords

Batteries; Electrodes; Energy storage; Pi interactions; Redox chemistry

Indexed keywords

ELECTRODES; ENERGY STORAGE; MOLECULAR ORBITALS; REDOX REACTIONS; SECONDARY BATTERIES; SOLAR CELLS;

EID: 84878340679     PISSN: 18645631     EISSN: 1864564X     Source Type: Journal    
DOI: 10.1002/cssc.201300010     Document Type: Article
Times cited : (62)

References (48)
  • 5
    • 34547272388 scopus 로고    scopus 로고
    • The use of polymers of carbodiimide and acid anhydride resulted in high cycle performance
    • The use of polymers of carbodiimide and acid anhydride resulted in high cycle performance. See: a) X. Han, C. Chang, L. Yuan, T. Sun, J. Sun, Adv. Mater. 2007, 19, 1616;
    • (2007) Adv. Mater. , vol.19 , pp. 1616
    • Han, X.1    Chang, C.2    Yuan, L.3    Sun, T.4    Sun, J.5
  • 13
    • 84886179128 scopus 로고    scopus 로고
    • For a recent overview of, and perspective on, phenalenyl chemistry, see
    • (Ed.: R. G. Hicks) Wiley Chichester Ch. 3
    • For a recent overview of, and perspective on, phenalenyl chemistry, see: a) Y. Morita, S. Nishida, in Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds (Ed.: R. G. Hicks), Wiley, Chichester, 2010, Ch. 3, pp. 81-145;
    • (2010) Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds , pp. 81-145
    • Morita, Y.1    Nishida, S.2
  • 17
    • 0142223684 scopus 로고    scopus 로고
    • We have proposed that the use of organic molecules with multistage redox chemistry as active electrode materials enables to develop highcapacity rechargeable batteries. See
    • We have proposed that the use of organic molecules with multistage redox chemistry as active electrode materials enables to develop highcapacity rechargeable batteries. See: a) Y. Morita, et al., Angew. Chem. 2002, 114, 1871;
    • (2002) Angew. Chem. , vol.114 , pp. 1871
    • Morita, Y.1
  • 18
    • 0036260190 scopus 로고    scopus 로고
    • (see the Supporting Information)
    • Angew. Chem. Int. Ed. 2002, 41, 1793 (see the Supporting Information);
    • (2002) Angew. Chem. Int. Ed. , vol.41 , pp. 1793
  • 20
    • 33644640265 scopus 로고    scopus 로고
    • We described the existence of the 12-center-2-electron bond within a p-dimer of tri-tert-butylphenalenyl radical. See Such a multibonding interaction is also the key factor in strong intermolecular networks in crystals of R3TOT see Ref [9]
    • We described the existence of the 12-center-2-electron bond within a p-dimer of tri-tert-butylphenalenyl radical. See: S. Suzuki, Y. Morita, K. Fukui, K. Sato, D. Shiomi, T. Takui, K. Nakasuji, J. Am. Chem. Soc. 2006, 128, 2530. Such a multibonding interaction is also the key factor in strong intermolecular networks in crystals of R3TOT; see Ref. [9].
    • (2006) J. Am. Chem. Soc. , vol.128 , pp. 2530
    • Suzuki, S.1    Morita, Y.2    Fukui, K.3    Sato, K.4    Shiomi, D.5    Takui, T.6    Nakasuji, K.7
  • 21
  • 23
    • 85020957079 scopus 로고
    • For a report on lithium batteries using TCNQ as a active cathode material, see
    • For a report on lithium batteries using TCNQ as a active cathode material, see: S. Tobishima, A. Yamaji, Jpn. Kokai Tokkyo Koho, JP1982210567, 1982.
    • (1982) Jpn. Kokai Tokkyo Koho, JP1982210567
    • Tobishima, S.1    Yamaji, A.2
  • 24
    • 84862202954 scopus 로고    scopus 로고
    • For a report on rechargeable quasi-solid-state lithium batteries using TCNQ and DDQ as active cathode materials, see
    • For a report on rechargeable quasi-solid-state lithium batteries using TCNQ and DDQ as active cathode materials, see: Y. Hanyu, I. Honma, Sci. Rep. 2012, 49, 453.
    • (2012) Sci. Rep. , vol.49 , pp. 453
    • Hanyu, Y.1    Honma, I.2
  • 26
    • 84884279774 scopus 로고    scopus 로고
    • JP 2004111374A Bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene (TTP) derivatives
    • b) Y. Inatomi, N. Hojo, M. Shimada, Jpn. Kokai Tokkyo Koho, JP 2004111374A, 2004. Bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene (TTP) derivatives:
    • (2004) Jpn. Kokai Tokkyo Koho
    • Inatomi, Y.1    Hojo, N.2    Shimada, M.3
  • 34
    • 84878277204 scopus 로고    scopus 로고
    • JP 201055923A
    • c) JP 201055923A, 2010;
  • 35
    • 84878266763 scopus 로고    scopus 로고
    • JP 201080343A
    • JP 201080343A, 2010.
    • (2010)
  • 36
    • 37049073977 scopus 로고
    • For reports on 11,11,12,12-tetracyano-2,6-anthraquinodimethane (TANT), see
    • For reports on 11,11,12,12-tetracyano-2,6-anthraquinodimethane (TANT), see: a) T. Yanagimoto, K. Takimiya, T. Otsubo, F. Ogura, J. Chem. Soc. Chem. Commun. 1993, 519;
    • (1993) J Chem Soc Chem Commun , pp. 519
    • Yanagimoto, T.1    Takimiya, K.2    Otsubo, T.3    Ogura, F.4
  • 39
    • 85020983537 scopus 로고    scopus 로고
    • Theoretical capacity in units of Ahkg-1 is calculated by F(1000/Mw)n/3600, where F is Faraday's constant (9.65-104 C mol-1), Mw is the molecular weight, and n is the number of electrons involved in the charge-discharge process
    • Theoretical capacity in units of Ahkg-1 is calculated by F(1000/Mw)n/3600, where F is Faraday's constant (9.65-104 C mol-1), Mw is the molecular weight, and n is the number of electrons involved in the charge-discharge process.
  • 44
    • 84919300020 scopus 로고
    • The potential was estimated using potentials of Li/Li+ (-2.73 V) and of Fc/Fc+ (+0.62 V) vs. standard hydrogen electrode in acetonitrile. For the potential of Li/Li+, see for the potential of Fc/Fc+, see
    • The potential was estimated using potentials of Li/Li+ (-2.73 V) and of Fc/Fc+ (+0.62 V) vs. standard hydrogen electrode in acetonitrile. For the potential of Li/Li+, see: a) Y. Marcus, Pure Appl. Chem. 1985, 57, 1129; for the potential of Fc/Fc+, see:
    • (1985) Pure Appl. Chem. , vol.57 , pp. 1129
    • Marcus, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.