메뉴 건너뛰기




Volumn 11, Issue , 2013, Pages 1-15

An improved PSO algorithm with a territorial diversity-preserving scheme and enhanced exploration-exploitation balance

Author keywords

Composition test functions; Diversity preservation; Exploitation; Exploration; Particle swarm optimization; Premature convergence

Indexed keywords

BENCHMARK FUNCTIONS; COLLISION OPERATORS; EXPLOITATION; EXPLORATION EXPLOITATIONS; IMPROVED PSO ALGORITHMS; PARTICLE SWARM OPTIMIZATION ALGORITHM; PRE-MATURE CONVERGENCES; TEST FUNCTIONS;

EID: 84878320141     PISSN: 22106502     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.swevo.2012.12.004     Document Type: Article
Times cited : (92)

References (39)
  • 3
    • 44349195551 scopus 로고    scopus 로고
    • Analysis of the publications on the applications of particle swarm optimisation
    • R. Poli Analysis of the publications on the applications of particle swarm optimisation Journal of Artificial Evolution and Applications 2008 2008 1 10
    • (2008) Journal of Artificial Evolution and Applications , vol.2008 , pp. 1-10
    • Poli, R.1
  • 4
    • 84856590860 scopus 로고    scopus 로고
    • Optimization of tile manufacturing process using particle swarm optimization
    • T. Navalertporn, and N.V. Afzulpurkar Optimization of tile manufacturing process using particle swarm optimization Swarm and Evolutionary Computation 1 2 2011 97 109
    • (2011) Swarm and Evolutionary Computation , vol.1 , Issue.2 , pp. 97-109
    • Navalertporn, T.1    Afzulpurkar, N.V.2
  • 5
    • 81955160735 scopus 로고    scopus 로고
    • Tuning of neural networks using particle swarm optimization to model MIG welding process
    • R. Malviya, and D.K. Pratihar Tuning of neural networks using particle swarm optimization to model MIG welding process Swarm and Evolutionary Computation 1 4 2011 223 235
    • (2011) Swarm and Evolutionary Computation , vol.1 , Issue.4 , pp. 223-235
    • Malviya, R.1    Pratihar, D.K.2
  • 6
    • 84857056396 scopus 로고    scopus 로고
    • Multi-objective planning of electrical distribution systems incorporating sectionalizing switches and tie-lines using particle swarm optimization
    • N.C. Sahooa, S. Gangulyb, and D. Das Multi-objective planning of electrical distribution systems incorporating sectionalizing switches and tie-lines using particle swarm optimization Swarm and Evolutionary Computation 3 2012 15 32
    • (2012) Swarm and Evolutionary Computation , vol.3 , pp. 15-32
    • Sahooa, N.C.1    Gangulyb, S.2    Das, D.3
  • 7
    • 82055176918 scopus 로고    scopus 로고
    • Model order formulation of a multivariable discrete system using a modified particle swarm optimization approach
    • S.N. Deepa, and G. Sugumaran Model order formulation of a multivariable discrete system using a modified particle swarm optimization approach Swarm and Evolutionary Computation 1 4 2011 204 212
    • (2011) Swarm and Evolutionary Computation , vol.1 , Issue.4 , pp. 204-212
    • Deepa, S.N.1    Sugumaran, G.2
  • 8
    • 84858450651 scopus 로고    scopus 로고
    • A new PSO-optimized geometry of spatial and spatio-temporal scan statistics for disease outbreak detection
    • H. Izakiana, and W. Pedrycz A new PSO-optimized geometry of spatial and spatio-temporal scan statistics for disease outbreak detection Swarm and Evolutionary Computation 4 2012 1 11
    • (2012) Swarm and Evolutionary Computation , vol.4 , pp. 1-11
    • Izakiana, H.1    Pedrycz, W.2
  • 10
    • 54249120475 scopus 로고    scopus 로고
    • Particle swarm optimization with an improved exploration-exploitation balance
    • MWSCAS 10-13 Aug
    • M. Ben Ghalia, Particle swarm optimization with an improved exploration-exploitation balance, in: 51st Midwest Symposium on Circuits and Systems, MWSCAS 10-13 Aug, 2008, pp. 759-762.
    • (2008) 51st Midwest Symposium on Circuits and Systems , pp. 759-762
    • Ben Ghalia, M.1
  • 13
    • 0037475094 scopus 로고    scopus 로고
    • The particle swarm optimization algorithm: Convergence analysis and parameter selection
    • T. Ioan Cristian The particle swarm optimization algorithm: convergence analysis and parameter selection Information Processing Letters 85 6 2003 317 325
    • (2003) Information Processing Letters , vol.85 , Issue.6 , pp. 317-325
    • Ioan Cristian, T.1
  • 21
    • 33744730797 scopus 로고    scopus 로고
    • Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
    • J.J. Liang, A.K. Qin, P.N. Suganthan, and S. Baskar Comprehensive learning particle swarm optimizer for global optimization of multimodal functions IEEE Transaction on Evolutionary Computation 10 3 2006 281 295
    • (2006) IEEE Transaction on Evolutionary Computation , vol.10 , Issue.3 , pp. 281-295
    • Liang, J.J.1    Qin, A.K.2    Suganthan, P.N.3    Baskar, S.4
  • 22
    • 84862688092 scopus 로고    scopus 로고
    • Dynamic neighborhood learning based particle swarm optimizer for global numerical optimization
    • D. Nasir Md, S. Das, S. Sengupta, U. Haldar, and P.N.A. Suganthan Dynamic neighborhood learning based particle swarm optimizer for global numerical optimization Information Sciences 209 2012 16 36
    • (2012) Information Sciences , vol.209 , pp. 16-36
    • Nasir Md, D.1    Das, S.2    Sengupta, S.3    Haldar, U.4    Suganthan, P.N.A.5
  • 24
    • 27144442023 scopus 로고    scopus 로고
    • Dynamic multi-swarm particle swarm optimizer with local search
    • J.J. Liang, P.N. Suganthan, Dynamic multi-swarm particle swarm optimizer with local search, in: Proc. IEEE Congr. Evol. Comput. 2005, pp. 522-528.
    • (2005) Proc. IEEE Congr. Evol. Comput. , pp. 522-528
    • Liang, J.J.1    Suganthan, P.N.2
  • 27
  • 29
    • 84901449286 scopus 로고    scopus 로고
    • Extending particle swarm optimizers with self-organized criticality
    • M. Lovbjerg, T. Krink, Extending particle swarm optimizers with self-organized criticality, in: Proc. Congr. Evol. Comput. 2002, pp. 1588-1593.
    • (2002) Proc. Congr. Evol. Comput. , pp. 1588-1593
    • Lovbjerg, M.1    Krink, T.2
  • 32
    • 84922952925 scopus 로고    scopus 로고
    • An improved diversity guided particle swarm optimization
    • H. Wang, Y. Shen, T. Huang, Z. Zeng, Springer Berlin/Heidelberg
    • D. Xu, and X. Ai An improved diversity guided particle swarm optimization H. Wang, Y. Shen, T. Huang, Z. Zeng, The Sixth International Symposium on Neural Networks (ISNN 2009) 2009 Springer Berlin/Heidelberg 623 630
    • (2009) The Sixth International Symposium on Neural Networks (ISNN 2009) , pp. 623-630
    • Xu, D.1    Ai, X.2
  • 33
    • 70449786929 scopus 로고    scopus 로고
    • Diversity enhanced particle swarm optimizer for global optimization of multimodal problems
    • S.Z. Zhao, and P.N. Suganthan Diversity enhanced particle swarm optimizer for global optimization of multimodal problems IEEE Congress on Evolutionary Computation, Norway 2009 590 597
    • (2009) IEEE Congress on Evolutionary Computation, Norway , pp. 590-597
    • Zhao, S.Z.1    Suganthan, P.N.2
  • 34
    • 0042879997 scopus 로고    scopus 로고
    • Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)
    • N. Hansen, S.D. Müller, and P. Koumoutsakos Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES) Evolutionary Computation 11 1 2003 1 18
    • (2003) Evolutionary Computation , vol.11 , Issue.1 , pp. 1-18
    • Hansen, N.1    Müller, S.D.2    Koumoutsakos, P.3
  • 35
    • 79960535211 scopus 로고    scopus 로고
    • A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
    • J. Derrac, S. García, D. Molina, and F. Herrera A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms Swarm and Evolutionary Computation 1 1 2011 3 18
    • (2011) Swarm and Evolutionary Computation , vol.1 , Issue.1 , pp. 3-18
    • Derrac, J.1    García, S.2    Molina, D.3    Herrera, F.4
  • 38
    • 71649104675 scopus 로고    scopus 로고
    • On the limitations of classical benchmark functions for evaluating robustness of evolutionary algorithms
    • A. Ahrari, M.R. Saadatmand, M. Shariat-Panahi, and A.A. Atai On the limitations of classical benchmark functions for evaluating robustness of evolutionary algorithms Applied Mathematics and Computation 215 9 2010 3222 3229
    • (2010) Applied Mathematics and Computation , vol.215 , Issue.9 , pp. 3222-3229
    • Ahrari, A.1    Saadatmand, M.R.2    Shariat-Panahi, M.3    Atai, A.A.4
  • 39
    • 1842740744 scopus 로고    scopus 로고
    • Test functions with variable attraction regions for global optimization problems
    • M. Gaviano, and D. Lera Test functions with variable attraction regions for global optimization problems Journal of Global Optimization 13 2 1998 207 223
    • (1998) Journal of Global Optimization , vol.13 , Issue.2 , pp. 207-223
    • Gaviano, M.1    Lera, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.