메뉴 건너뛰기




Volumn 1, Issue , 2013, Pages 191-200

Simple, fast, accurate melanocytic lesion segmentation in 1D colour space

Author keywords

Dermatoscopy; Melanocytic lesion; Melanoma; Naevus; Segmentation

Indexed keywords

COMPUTATIONAL RESOURCES; DERMATOSCOPY; HIGH RESOLUTION IMAGE; MELANOCYTIC LESION; MELANOMA; NAEVUS; NOVEL TECHNIQUES; STATE-OF-THE-ART TECHNIQUES;

EID: 84878220098     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (3)

References (25)
  • 1
  • 2
    • 84863557347 scopus 로고    scopus 로고
    • Where's the naevus? Inter-operator variability in the localization of melanocytic lesion border
    • Belloni Fortina, A., Peserico, E., Silletti, A., and Zattra, E. (2011). Where's the naevus? Inter-operator variability in the localization of melanocytic lesion border. Skin Res. and Tech., 18(3).
    • (2011) Skin Res. and Tech. , vol.18 , Issue.3
    • Belloni Fortina, A.1    Peserico, E.2    Silletti, A.3    Zattra, E.4
  • 6
    • 0742322178 scopus 로고    scopus 로고
    • A linear-time component-labeling algorithm using contour tracing technique
    • Chang, F., Chen, C.-J., and Lu, C.-J. (2004). A linear-time component-labeling algorithm using contour tracing technique. Comput. Vis. Image Underst., 93(2).
    • (2004) Comput. Vis. Image Underst. , vol.93 , Issue.2
    • Chang, F.1    Chen, C.-J.2    Lu, C.-J.3
  • 7
    • 0142017383 scopus 로고    scopus 로고
    • Exploiting color and topological features for region segmentation with recursive fuzzy c-means
    • Cucchiara, R., Grana, C., Seidenari, S., and Pellacani, G. (2002). Exploiting color and topological features for region segmentation with recursive fuzzy c-means. Machine Graph. and Vision, 11(2/3).
    • (2002) Machine Graph. and Vision , vol.11 , Issue.2-3
    • Cucchiara, R.1    Grana, C.2    Seidenari, S.3    Pellacani, G.4
  • 8
    • 14844303908 scopus 로고    scopus 로고
    • Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes
    • Erkol, B., Moss, R. H., Stanley, R. J., Van Stoecker, W., and Hvatum, E. (2005). Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes. Skin Res. and Tech., 11(1).
    • (2005) Skin Res. and Tech. , vol.11 , Issue.1
    • Erkol, B.1    Moss, R.H.2    Stanley, R.J.3    Van Stoecker, W.4    Hvatum, E.5
  • 9
    • 84055193429 scopus 로고    scopus 로고
    • Virtual-Shave: Automated hair removal from digital dermatoscopic images
    • Fiorese, M., Peserico, E., and Silletti, A. (2011). Virtual-Shave: Automated hair removal from digital dermatoscopic images. In Proc. of IEEE EMBC.
    • (2011) Proc. of IEEE EMBC
    • Fiorese, M.1    Peserico, E.2    Silletti, A.3
  • 10
    • 84878245609 scopus 로고    scopus 로고
    • FotoFinder Systems Inc. (2012). Fotofinder dermoscope. http://www.fotofinder.de/en.html.
    • (2012) Fotofinder Dermoscope
  • 11
    • 0032306216 scopus 로고    scopus 로고
    • Segmentation of dermatoscopic images by stabilized inverse diffusion equations
    • Gao, J., Zhang, J., Fleming, M. G., Pollak, I., and Cognetta, A. B. (1998). Segmentation of dermatoscopic images by stabilized inverse diffusion equations. In Proc. of ICIP.
    • (1998) Proc. of ICIP
    • Gao, J.1    Zhang, J.2    Fleming, M.G.3    Pollak, I.4    Cognetta, A.B.5
  • 12
    • 0030043054 scopus 로고    scopus 로고
    • Unsupervised color image segmentation with application to skin tumor borders
    • Hance, G. A., Umbaugh, S. E., Moss, R. H., and Stoecker, W. V. (1996). Unsupervised color image segmentation with application to skin tumor borders. In Proc. of IEEE EMBC.
    • (1996) Proc. of IEEE EMBC
    • Hance, G.A.1    Umbaugh, S.E.2    Moss, R.H.3    Stoecker, W.V.4
  • 14
    • 0034246174 scopus 로고    scopus 로고
    • EdgeFlow: A technique for boundary detection and image segmentation
    • Ma, W.-Y. and Manjunath, B. S. (2000). EdgeFlow: a technique for boundary detection and image segmentation. IEEE Trans. on Image Processing, 9(8).
    • (2000) IEEE Trans. on Image Processing , vol.9 , Issue.8
    • Ma, W.-Y.1    Manjunath, B.S.2
  • 16
    • 33745133066 scopus 로고    scopus 로고
    • Comparison of color clustering algorithms for segmentation of dermatological images
    • Melli, R., Grana, C., and Cucchiara, R. (2006). Comparison of color clustering algorithms for segmentation of dermatological images. In Proc. of SPIE.
    • (2006) Proc. of SPIE
    • Melli, R.1    Grana, C.2    Cucchiara, R.3
  • 18
    • 0029984475 scopus 로고    scopus 로고
    • The incidence of malignant melanoma in the United States: Issues as we approach the 21st century
    • Rigel, D. S., Friedman, R. J., and Kopf, A. W. (1996). The incidence of malignant melanoma in the United States: issues as we approach the 21st century. JAAD, 34(5, Part 1).
    • (1996) JAAD , vol.34 , Issue.5 PART 1
    • Rigel, D.S.1    Friedman, R.J.2    Kopf, A.W.3
  • 19
    • 0032587461 scopus 로고    scopus 로고
    • Segmentation of digitized dermatoscopic images by two-dimensional color clustering comparison
    • Schmid, P. (1999). Segmentation of digitized dermatoscopic images by two-dimensional color clustering comparison. IEEE Trans. on Medical Imaging, 18(2).
    • (1999) IEEE Trans. on Medical Imaging , vol.18 , Issue.2
    • Schmid, P.1
  • 23
    • 0041527213 scopus 로고    scopus 로고
    • Linear-time connected-component labeling based on sequential local operations
    • Suzuki, K., Horiba, I., and Sugie, N. (2003). Linear-time connected-component labeling based on sequential local operations. Comput. Vis. Image Underst., 89(1).
    • (2003) Comput. Vis. Image Underst. , vol.89 , Issue.1
    • Suzuki, K.1    Horiba, I.2    Sugie, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.