메뉴 건너뛰기




Volumn 1, Issue , 2012, Pages 685-693

A probabilistic model for canonicalizing named entity mentions

Author keywords

[No Author keywords available]

Indexed keywords

AGGLOMERATIVE CLUSTERING; BAYESIAN INFERENCE; ENTITY CONTEXTS; FIRST-ORDER DEPENDENCY; POLITICAL BLOGS; PROBABILISTIC MODELS; SURFACE FEATURE; TRANSDUCTIVE LEARNING;

EID: 84878199388     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (4)

References (20)
  • 1
    • 73549088698 scopus 로고    scopus 로고
    • Scalable training of l1- regularized log-linear models
    • G. Andrew and J. Gao. 2007. Scalable training of L1- regularized log-linear models. In Proc. of ICML.
    • (2007) Proc. of ICML
    • Andrew, G.1    Gao, J.2
  • 2
    • 84859035460 scopus 로고    scopus 로고
    • Template-based information extraction without the templates
    • N. Chambers and D. Jurafsky. 2011. Template-based information extraction without the templates. In Proc. of ACL-HLT.
    • (2011) Proc. of ACL-HLT
    • Chambers, N.1    Jurafsky, D.2
  • 3
    • 85120657179 scopus 로고    scopus 로고
    • Unsupervised learning of name structure from coreference data
    • E. Charniak. 2001. Unsupervised learning of name structure from coreference data. In Proc. of NAACL.
    • (2001) Proc. of NAACL
    • Charniak, E.1
  • 6
    • 84863393743 scopus 로고    scopus 로고
    • Structured generative models for unsupervised namedentity clustering
    • M. Elsner, E. Charniak, and M. Johnson. 2009. Structured generative models for unsupervised namedentity clustering. In Proc. of NAACL-HLT.
    • (2009) Proc. of NAACL-HLT
    • Elsner, M.1    Charniak, E.2    Johnson, M.3
  • 7
    • 84859918687 scopus 로고    scopus 로고
    • Incorporating non-local information into information extraction systems by gibbs sampling
    • J. R. Finkel, T. Grenager, and C. Manning. 2005. Incorporating non-local information into information extraction systems by Gibbs sampling. In Proc. of ACL.
    • (2005) Proc. of ACL
    • Finkel, J.R.1    Grenager, T.2    Manning, C.3
  • 8
    • 84859094402 scopus 로고    scopus 로고
    • Unsupervised coreference resolution in a nonparametric bayesian model
    • A. Haghighi and D. Klein. 2007. Unsupervised coreference resolution in a nonparametric Bayesian model. In Proc. of ACL.
    • (2007) Proc. of ACL
    • Haghighi, A.1    Klein, D.2
  • 11
    • 0023173192 scopus 로고
    • A shortest augmenting path algorithm for dense and sparse linear assignment problems
    • R. Jonker and A. Volgenant. 1987. A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing, 38(4):325-340.
    • (1987) Computing , vol.38 , Issue.4 , pp. 325-340
    • Jonker, R.1    Volgenant, A.2
  • 12
    • 29344449936 scopus 로고    scopus 로고
    • Identification and tracing of ambiguous names: Discriminative and generative approaches
    • X. Li, P. Morie, and D. Roth. 2004. Identification and tracing of ambiguous names: discriminative and generative approaches. In Proc. of AAAI.
    • (2004) Proc. of AAAI
    • Li, X.1    Morie, P.2    Roth, D.3
  • 13
    • 33646887390 scopus 로고
    • On the limited memory BFGS method for large scale optimization
    • D. C. Liu and J. Nocedal. 1989. On the limited memory BFGS method for large scale optimization. Mathematical Programming B, 45(3):503-528.
    • (1989) Mathematical Programming B , vol.45 , Issue.3 , pp. 503-528
    • Liu, D.C.1    Nocedal, J.2
  • 14
    • 84859895217 scopus 로고    scopus 로고
    • Bayesian unsupervised word segmentation with nested pitman-yor language modeling
    • D. Mochihashi, T. Yamada, and N. Ueda. 2009. Bayesian unsupervised word segmentation with nested Pitman-Yor language modeling. In Proc. of ACLIJCNLP.
    • (2009) Proc. of ACLIJCNLP
    • Mochihashi, D.1    Yamada, T.2    Ueda, N.3
  • 15
    • 84950432453 scopus 로고
    • Parametric empirical bayes inference: Theory and applications
    • C. Morris. 1983. Parametric empirical Bayes inference: Theory and applications. Journal of the American Statistical Association, 78(381):47-65.
    • (1983) Journal of the American Statistical Association , vol.78 , Issue.381 , pp. 47-65
    • Morris, C.1
  • 16
    • 80053355330 scopus 로고    scopus 로고
    • Joint unsupervised coreference resolution with markov logic
    • H. Poon and P. Domingos. 2008. Joint unsupervised coreference resolution with Markov logic. In Proc. of EMNLP.
    • (2008) Proc. of EMNLP
    • Poon, H.1    Domingos, P.2
  • 17
    • 84859067210 scopus 로고    scopus 로고
    • Large-scale cross-document coreference using distributed inference and hierarchical models
    • S. Singh, A. Subramanya, F. Pereira, and A. McCallum. 2011. Large-scale cross-document coreference using distributed inference and hierarchical models. In Proc. of ACL-HLT.
    • (2011) Proc. of ACL-HLT
    • Singh, S.1    Subramanya, A.2    Pereira, F.3    Mccallum, A.4
  • 18
    • 84859905260 scopus 로고    scopus 로고
    • Contrastive estimation: Training log-linear models on unlabeled data
    • N. A. Smith and J. Eisner. 2005. Contrastive estimation: training log-linear models on unlabeled data. In Proc. of ACL.
    • (2005) Proc. of ACL
    • Smith, N.A.1    Eisner, J.2
  • 19
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal of Royal Statistical Society B, 58(1):267-288.
    • (1996) Journal of Royal Statistical Society B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 20
    • 84950432017 scopus 로고
    • A monte carlo implementation of the EM algorithm and the poor man's data augmentation algorithms
    • G. C. G. Wei and M. A. Tanner. 1990. A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. Journal of the American Statistical Association, 85(411):699-704.
    • (1990) Journal of the American Statistical Association , vol.85 , Issue.411 , pp. 699-704
    • Wei, G.C.G.1    Tanner, M.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.