메뉴 건너뛰기




Volumn 141, Issue 5, 2013, Pages 1454-1468

Hidden error variance theory. part I: Exposition and analytic model

Author keywords

[No Author keywords available]

Indexed keywords

CLIMATOLOGICAL DISTRIBUTIONS; CONDITIONAL VARIANCE; DATA ASSIMILATION SYSTEMS; EMPIRICAL ESTIMATIONS; ENSEMBLE KALMAN FILTER; FORECAST ERROR VARIANCE; LIKELIHOOD DISTRIBUTION; POSTERIOR DISTRIBUTIONS;

EID: 84878190673     PISSN: 00270644     EISSN: 15200493     Source Type: Journal    
DOI: 10.1175/MWR-D-12-00118.1     Document Type: Article
Times cited : (28)

References (26)
  • 1
    • 0035655814 scopus 로고    scopus 로고
    • An ensemble adjustment Kalman filter for data assimilation
    • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 2884-2903.
    • (2001) Mon. Wea. Rev. , vol.129 , pp. 2884-2903
    • Anderson, J.L.1
  • 2
    • 0035270690 scopus 로고    scopus 로고
    • Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects
    • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420-436.
    • (2001) Mon. Wea. Rev. , vol.129 , pp. 420-436
    • Bishop, C.H.1    Etherton, B.J.2    Majumdar, S.J.3
  • 3
    • 84878182378 scopus 로고    scopus 로고
    • Hidden error variance theory. Part II: An instrument that reveals hidden error variance distributions from ensemble forecasts and observations
    • Bishop, C. H., E. A. Satterfield, and K. T. Shanley, 2013: Hidden error variance theory. Part II: An instrument that reveals hidden error variance distributions from ensemble forecasts and observations. Mon. Wea. Rev., 141, 1469-1483.
    • (2013) Mon. Wea. Rev. , vol.141 , pp. 1469-1483
    • Bishop, C.H.1    Satterfield, E.A.2    Shanley, K.T.3
  • 5
    • 0033792589 scopus 로고    scopus 로고
    • Ahybrid ensembleKalman filter- 3D variational analysis scheme
    • Hamill, T. M., and C. Snyder, 2000:Ahybrid ensembleKalman filter- 3D variational analysis scheme.Mon.Wea. Rev., 128, 2905-2919.
    • (2000) Mon.Wea. Rev. , vol.128 , pp. 2905-2919
    • Hamill, T.M.1    Snyder, C.2
  • 6
    • 0035129828 scopus 로고    scopus 로고
    • A sequential ensemble Kalman filter for atmospheric data assimilation
    • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123-137.
    • (2001) Mon. Wea. Rev. , vol.129 , pp. 123-137
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 8
    • 34248675795 scopus 로고    scopus 로고
    • Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter
    • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112-126.
    • (2007) Physica D , vol.230 , pp. 112-126
    • Hunt, B.R.1    Kostelich, E.J.2    Szunyogh, I.3
  • 11
    • 0000241853 scopus 로고
    • Deterministic nonperiodic flow
    • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130-141.
    • (1963) J. Atmos. Sci. , vol.20 , pp. 130-141
    • Lorenz, E.N.1
  • 12
    • 0001846226 scopus 로고    scopus 로고
    • Predictability-A problem solved
    • Reading, United Kingdom, ECMWF
    • Lorenz, E. N., 1996: Predictability-A problem solved. Proc. Predictability, Reading, United Kingdom, ECMWF.
    • (1996) Proc. Predictability
    • Lorenz, E.N.1
  • 13
    • 20444468413 scopus 로고    scopus 로고
    • Designing chaotic models
    • Lorenz, E. N., 2005: Designing chaotic models. J. Atmos. Sci., 62, 1574- 1587.
    • (2005) J. Atmos. Sci. , vol.62
    • Lorenz, E.N.1
  • 14
    • 0035490534 scopus 로고    scopus 로고
    • Can an ensemble transform Kalman filter predict the reduction in forecast error variance produced by targeted observations?
    • Majumdar, S. J., C. H. Bishop, I. Szunyogh, and Z. Toth, 2001: Can an ensemble transform Kalman filter predict the reduction in forecast error variance produced by targeted observations? Quart. J. Roy. Meteor. Soc., 127, 2803-2820.
    • (2001) Quart. J. Roy. Meteor. Soc. , vol.127 , pp. 2803-2820
    • Majumdar, S.J.1    Bishop, C.H.2    Szunyogh, I.3    Toth, Z.4
  • 15
    • 44449090456 scopus 로고    scopus 로고
    • Evaluation of the ensemble transform analysis perturbation scheme at NRL
    • McLay, J. G., C. H. Bishop, and C. A. Reynolds, 2008: Evaluation of the ensemble transform analysis perturbation scheme at NRL. Mon. Wea. Rev., 136, 1093-1108.
    • (2008) Mon. Wea. Rev. , vol.136 , pp. 1093-1108
    • McLay, J.G.1    Bishop, C.H.2    Reynolds, C.A.3
  • 17
    • 8844258829 scopus 로고    scopus 로고
    • A local ensemble Kalman filter for atmospheric data assimilation
    • Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415-428.
    • (2004) Tellus , vol.56 A , pp. 415-428
    • Ott, E.1
  • 18
    • 0019214563 scopus 로고
    • Chaotic and periodic behavior of finite-amplitude baroclinic waves
    • Pedlosky, J., and C. Frenzen, 1980: Chaotic and periodic behavior of finite-amplitude baroclinic waves. J. Atmos. Sci., 37, 1177- 1196.
    • (1980) J. Atmos. Sci. , vol.37
    • Pedlosky, J.1    Frenzen, C.2
  • 19
    • 20444497873 scopus 로고    scopus 로고
    • Using Bayesian model averaging to calibrate forecast ensembles
    • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 1155-1174.
    • (2005) Mon. Wea. Rev. , vol.133 , pp. 1155-1174
    • Raftery, A.E.1    Gneiting, T.2    Balabdaoui, F.3    Polakowski, M.4
  • 21
    • 0001509508 scopus 로고
    • Ensemble forecasting at NMC: The generation of perturbations
    • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 2317-2330.
    • (1993) Bull. Amer. Meteor. Soc. , vol.74 , pp. 2317-2330
    • Toth, Z.1    Kalnay, E.2
  • 22
    • 0000593274 scopus 로고    scopus 로고
    • Ensemble forecasting at NCEP and the breeding method
    • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 3297-3319.
    • (1997) Mon. Wea. Rev. , vol.125 , pp. 3297-3319
    • Toth, Z.1    Kalnay, E.2
  • 23
    • 74949130817 scopus 로고    scopus 로고
    • Particle filtering in geophysical systems
    • van Leeuwen, P. J., 2009: Particle filtering in geophysical systems. Mon. Wea. Rev., 137, 4089-4114.
    • (2009) Mon. Wea. Rev. , vol.137 , pp. 4089-4114
    • van Leeuwen, P.J.1
  • 24
    • 0037980372 scopus 로고    scopus 로고
    • A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes
    • Wang, X., and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 1140-1158.
    • (2003) J. Atmos. Sci. , vol.60 , pp. 1140-1158
    • Wang, X.1    Bishop, C.H.2
  • 25
    • 27644443229 scopus 로고    scopus 로고
    • Improvement of ensemble reliability with a new dressing kernel
    • Wang, X., and C. H. Bishop, 2005: Improvement of ensemble reliability with a new dressing kernel. Quart. J. Roy. Meteor. Soc., 131, 965- 986.
    • (2005) Quart. J. Roy. Meteor. Soc. , vol.131
    • Wang, X.1    Bishop, C.H.2
  • 26
    • 0036646009 scopus 로고    scopus 로고
    • Ensemble data assimilation without perturbed observations
    • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 1913- 1924.
    • (2002) Mon. Wea. Rev. , vol.130 , pp. 1913-1924
    • Whitaker, J.S.1    Hamill, T.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.