메뉴 건너뛰기




Volumn 27, Issue 5, 2013, Pages 1023-1039

Parallel optimal choropleth map classification in PySAL

Author keywords

parallelization; PySAL; spatial analysis

Indexed keywords

CLASSIFICATION; GIS; SPATIAL ANALYSIS; THEMATIC MAPPING;

EID: 84878161754     PISSN: 13658816     EISSN: 13623087     Source Type: Journal    
DOI: 10.1080/13658816.2012.752094     Document Type: Article
Times cited : (17)

References (27)
  • 1
    • 85060036181 scopus 로고
    • Validity of the single processor approach to achieving large scale computing capabilities
    • 18-20 April, 18-20 April, Atlantic City, NJ, USAReston, VA: AFIPS Press
    • Amdahl, G. 18-20 April 1967. " Validity of the single processor approach to achieving large scale computing capabilities ". In AFIPS Conference Proceedings vol. 30 18-20 April, 483 - 485. Atlantic City, NJ, USAReston, VA: AFIPS Press
    • (1967) AFIPS Conference Proceedings vol. 30 , pp. 483-485
    • Amdahl, G.1
  • 5
    • 84903572506 scopus 로고    scopus 로고
    • Understanding the Python GIL
    • 20 February, Atlanta, GA
    • Beazley, D. 2010. " Understanding the Python GIL ". In PyCON 20 February, Atlanta, GA
    • (2010) PyCON
    • Beazley, D.1
  • 6
    • 0030442491 scopus 로고    scopus 로고
    • A comparison of optimal classification strategies for choroplethic displays of spatially aggregated data
    • Cromley, R. 1996. A comparison of optimal classification strategies for choroplethic displays of spatially aggregated data. International Journal of Geographical Information Systems, 10 (4): 405 - 424.
    • (1996) International Journal of Geographical Information Systems , vol.10 , Issue.4 , pp. 405-424
    • Cromley, R.1
  • 12
    • 77952342828 scopus 로고    scopus 로고
    • Available from(accessed 03 December 2012)
    • Munshi, A., 2008. "opencl" specification version 1.0 [online]. Available from(accessed 03 December 2012) http://www.khronos.org/registry/cl/ (http://www.khronos.org/registry/cl/)
    • (2008) "opencl" specification version 1.0 [online]
    • Munshi, A.1
  • 13
    • 84878147606 scopus 로고    scopus 로고
    • Technical report, NVIDIA Corporation, NVIDIA February 2011
    • 2012. CUDA API reference manual, Version 4.0, February 2011, Technical report, NVIDIA Corporation. NVIDIA
    • (2012) CUDA API reference manual, Version 4.0
  • 16
    • 84857436906 scopus 로고    scopus 로고
    • PySAL: a Python library of spatial analytical methods
    • In: Fischer M.M., Getis A., editors Berlin,: Springer, Ineds
    • Rey, S.J. and Anselin, L. 2010. " PySAL: a Python library of spatial analytical methods ". In Handbook of applied spatial analysis, Edited by: Fischer, M.M. and Getis, A. 175 - 193. Berlin: Springer. Ineds.
    • (2010) Handbook of applied spatial analysis , pp. 175-193
    • Rey, S.J.1    Anselin, L.2
  • 17
    • 84878131314 scopus 로고    scopus 로고
    • Visualization of space-time dynamics in criminal activity
    • 30 July 2012, San Diego, CA
    • Rey, S.J., Li, X. and Anselin, L. 2012. " Visualization of space-time dynamics in criminal activity ". In Joint Statistical Meetings 30 July 2012, San Diego, CA
    • (2012) Joint Statistical Meetings
    • Rey, S.J.1    Li, X.2    Anselin, L.3
  • 20
    • 84878138894 scopus 로고    scopus 로고
    • Available from(accessed 03 December 2012)
    • Vanovschi, V., 2012. Parallel Python [online]. Available from(accessed 03 December 2012) http://www.parallelpython.com
    • (2012) Parallel Python [online]
    • Vanovschi, V.1
  • 22
    • 77954069785 scopus 로고    scopus 로고
    • A cyberGIS framework for the synthesis of cyberinfrastructure, GIS, and spatial analysis
    • Wang, S. 2010. A cyberGIS framework for the synthesis of cyberinfrastructure, GIS, and spatial analysis. Annals of the Association of American Geographers, 100 (3): 535 - 557.
    • (2010) Annals of the Association of American Geographers , vol.100 , Issue.3 , pp. 535-557
    • Wang, S.1
  • 24
    • 34548569027 scopus 로고    scopus 로고
    • Parallelizing MCMC for Bayesian spatiotemporal geostatistical models
    • Yan, J. 2007. Parallelizing MCMC for Bayesian spatiotemporal geostatistical models. Statistics and Computing, 17 (4): 323 - 335.
    • (2007) Statistics and Computing , vol.17 , Issue.4 , pp. 323-335
    • Yan, J.1
  • 25
    • 84994178040 scopus 로고    scopus 로고
    • Distributed geospatial information processing: sharing distributed geospatial resources to support digital earth
    • Yang, C. 2008. Distributed geospatial information processing: sharing distributed geospatial resources to support digital earth. International Journal of Digital Earth, 1 (3): 259 - 278.
    • (2008) International Journal of Digital Earth , vol.1 , Issue.3 , pp. 259-278
    • Yang, C.1
  • 26
    • 77953535708 scopus 로고    scopus 로고
    • Geospatial cyberinfrastructure: past, present and future
    • Yang, C. 2010. Geospatial cyberinfrastructure: past, present and future. Computers, Environment and Urban Systems, 34 (4): 264 - 277.
    • (2010) Computers, Environment and Urban Systems , vol.34 , Issue.4 , pp. 264-277
    • Yang, C.1
  • 27
    • 79955001355 scopus 로고    scopus 로고
    • Using spatial principles to optimize distributed computing for enabling the physical science discoveries
    • Yang, C. 2011. Using spatial principles to optimize distributed computing for enabling the physical science discoveries. Proceedings of the National Academy of Sciences of the United States of America, 108 (14): 5498
    • (2011) Proceedings of the National Academy of Sciences of the United States of America , vol.108 , Issue.14 , pp. 5498
    • Yang, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.